数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 16668|回复: 95

偶数M表为两个素数和数量(单记)的区域下界计算值infS(m)与实际验证

[复制链接]
发表于 2018-9-29 11:23 | 显示全部楼层 |阅读模式
本帖最后由 愚工688 于 2019-7-18 13:14 编辑

        偶数M表为两个素数和数量(单记)的区域下界计算值infS(m)与实际验证

偶数能够分成的素对数量的趋势是波动的向上的,这是毫无疑义的。
因此要讲偶数M的素对数量的变化大趋势,则必须以√(M-2)以内的最大素数r 不变的情况划分区域进行讨论。
否则的话,已知的小偶数6、8的素对数量都是为1,那么再讨论偶数M表为两个素数和数量的下界计算式就无从谈起了。

对于≥6的任意大的偶数M来说:
可以用一个下界计算函数 inf(M)来表示,而inf(M)小于偶数M的实际表为两个素数和的数量真值S(m),有

S(m)≥inf(M)= (A-2)*0.5π(1- 2/r )* π[(p1-1)/(p1- 2)] /(1+.21) .--------  { 式1}
式中:
      p1系偶数含有的奇素数因子,p1≤ r ;
      令  k(m)=π[(p1-1)/(p1- 2)];
    则 k(m)可称为素因子系数;又k(m)值体现了素对数量的波动幅度,因此也可以称为波动系数。
   显然不含有奇素数因子p1的偶数,其素因子系数 k(m)=1 。
   
   从{ 式1}可以知道,偶数素对下界函数 inf(M)也是具有波动性的。它的下界,仅仅是相对该偶数本身的素对真值而言。

  如果要对一个区域的偶数表为两个素数和的表法数S(m)的低位值进行考察,那么就需要排除掉波动系数的影响。把式1中的波动系数略去,合并两个系数,0.5/(1+.21)≈0.413 ,就可以得到偶数M表为两个素数和数量的区域下界计算值infS(m):
        infS(m) ≈0.413(A-2)*π(1-2/p),----------- { 式2}
    式中,p取√(M-2)以内的全部奇素数。

  infS(m)计算值取值规律是向上取整值,而不是四舍五入。
  区域下界计算值infS(m)的含义是任何不小于偶数M的偶数表为两个素数和的数量不少于infS(m)取整值。
  偶数素对下界计算值inf(M)与区域下界计算值infS(m)的关系,有 : inf(M)= infS(m)* k(m) ,或  infS(m)=  inf(M)/k(m) ;
   
    随着偶数M的增大,≤√(M-2)的最大素数r的增大,在x值取值范围内形成素对A±x的x值的最低发生概率 p(m)min=0.5*π[(r-2)/r] 会有逐渐走低的规律性。那么表法数的区域下界计算值会怎样变化呢?
区域下界计算值infS(m)的变化有两个规律:
1. 在r不变的区域,p(m)min是个常数,表法数的下界计算值infS(m)是个如同 y=k(x)函数那样的随偶数半值A增大而单调缓慢上升的数值;
2. 在不同的r区域的首个偶数,虽然随偶数增大r会逐级增大,表法数的最低发生概率p(m)min会逐渐下降,但是由于偶数的增大速度远远超过了p(m)min的下降速度,因此各个r区域首位偶数的表法数的下界计算值infS(m)的相互比较,仍然是个随A增大而单调上升的数值。

这就是表明:偶数表为两个素数和的最低数量是随着偶数增大,相应的最大素数r 的增大,而以(r^2+1)为界线的偶数表为两个素数和的最低数量逐步增大。

因此可以得出结论:任意大偶数必然能够表为两个素数和的形式,因而偶数哥猜必定成立 。


最大素数r对应区间首个偶数表为两个素数之和数量的下界计算值infS(m)的计算与实际区域最少素对的偶数的示例:

r=2 、r=3,r=5 的偶数区域:
M= 6       S(m)= 1     Sp(m)≈ .5       δ(m)≈-.5      K(m)= 1       infS(m)≈ .41
M= 12     S(m)= 1     Sp(m)≈ 1.333    δ(m)≈ .333    K(m)= 2       infS(m)≈ .55
M=28    S( 28 )= 2       Sp(m)≈ 1.2      δ(m)≈-.4     K(m)= 1       infS(m)≈ .99     

因为 infS(6)≈ .41 ,向上取整 =1,
所以:任意≥6的偶数表为两个素数之和的表法数不少于1;
实际低位值偶数有 :S(6)= 1、S(8)= 1、S(12)= 1;

r=7的偶数区域(即7^2+3=52 起始的区域,下同):
S( 52 )= 3       Sp(m)≈ 1.714    δ(m)≈-.429   K(m)= 1       infS(m)≈ 1.41  

因为 infS(52)≈ 1.41,向上取整= 2,
所以:任意≥52 的偶数表为两个素数之和的表法数不少于2;
实际低位值偶数有 :S(68)=2 ;

r=11的偶数区域(即11^2+3=124 起始的区域,下同):
M= 124     S(m)= 5     Sp(m)≈ 3.506     δ(m)≈-.299    K(m)= 1       infS(m)≈ 2.9

因为 infS(124)≈ 2.9,向上取整= 3,
所以:任意≥124 的偶数表为两个素数之和的表法数不少于3;
实际低位值偶数有 :S(128)= 3;

r=13的偶数区域:
M= 172     S(m)= 6     Sp(m)≈ 4.154     δ(m)≈-.308    K(m)= 1       infS(m)≈ 3.43

因为 infS(172)≈ 3.43,向上取整= 4,
所以:任意≥172 的偶数表为两个素数之和的表法数不少于4;
实际低位值偶数有 :S(188)= 5;

r=17的偶数区域与r=19的偶数区域:
M= 292     S(m)= 8     Sp(m)≈ 6.283     δ(m)≈-.215    K(m)= 1       infS(m)≈ 5.19
M= 364     S(m)= 14    Sp(m)≈ 9.199     δ(m)≈-.343    K(m)= 1.309   infS(m)≈ 5.81

因为 infS(292)≈ 5.19,向上取整= 6,
所以:任意≥292 的偶数表为两个素数之和的表法数不少于6 ;
实际低位值偶数有 :S( 332 )= 6 ;

r=23的偶数区域:
M= 532     S(m)= 17    Sp(m)≈ 11.957    δ(m)≈-.297    K(m)= 1.271   infS(m)≈ 7.78

因为 infS(532)≈ 7.78,向上取整= 8,
所以:任意≥532 的偶数表为两个素数之和的表法数不少于8;
实际低位值偶数有 :S( 542 )= 10 、S(632)= 10;

r=31的偶数区域:
M= 964     S(m)= 18    Sp(m)≈ 14.902    δ(m)≈-.172    K(m)= 1       infS(m)≈ 12.31

因为 infS(964)≈ 12.3,向上取整= 13,
所以:任意≥964 的偶数表为两个素数之和的表法数不少于13;
实际低位值偶数有:S( 992 )= 13 ;

r=37的偶数区域:
M= 1372    S(m)= 27    Sp(m)≈ 24.105    δ(m)≈-.107    K(m)= 1.2     infS(m)≈ 16.6

因为 infS(1372)≈ 16.6,向上取整= 17,
所以:任意≥1372 的偶数表为两个素数之和的表法数不少于17;
实际低位值偶数有:S( 1412 )= 18 ;

r=41的偶数区域:
M= 1684    S(m)= 31    Sp(m)≈ 23.465    δ(m)≈-.243    K(m)= 1       infS(m)≈ 19.4

因为 infS(1682)≈ 19.4,向上取整= 20,
所以:任意≥1682 的偶数表为两个素数之和的表法数不少于20;
实际低位值偶数有:S( 1718 )= 21 ;

……
可以看到,各个不同素数对应的区域下界素对数量计算值infS(m)与不小于该偶数的限定区域偶数的素对最小值是比较接近的。

大一些的偶数,如 r=223的偶数区域:首个偶数是 223^2 +3= 49732,
S( 49732 )= 344  Sp(m)≈ 348.109  δ(m)≈ .012   K(m)= 1       infS(m)≈ 300.09   inf( 49732 )≈ 300.09

因为 infS(49732)≈ 300.09,向上取整= 301,
所以:任意≥49732 的偶数表为两个素数之和的表法数不少于301对;这就不进行验证低位值的偶数了。
……
而对于大偶数来说,比如说1000亿的大偶数,那么下界计算式inf(M)值的相对误差有多大呢?
以一些偶数的素对下界值 inf(M)的实例计算值来考察一下:

G(100000000000) = 149091160;
inf( 100000000000 )≈  142957976.6 , Δ≈-0.041137 ,infS( 100000000000 )= 107218482.41 , k(m)= 1.33333
G(100000000002) = 268556111;
inf( 100000000002 )≈  257491343.1 , Δ≈-0.041201,infS( 100000000002 )= 107218482.41 , k(m)= 2.40156
G(100000000004) = 111836359;
inf( 100000000004 )≈  107224584.4 , Δ≈-0.041239,infS( 100000000004 )= 107218482.41 , k(m)= 1.00006
G(100000000006) = 111843604;
inf( 100000000006 )≈  107245660.7 , Δ≈-0.041110,infS( 100000000006 )= 107218482.42 , k(m)= 1.00025
G(100000000008) = 223655943;
inf( 100000000008 )≈  214436964.8 , Δ≈-0.041219,infS( 100000000008 )= 107218482.42 , k(m)= 2
G(100000000010) = 150645060;
inf( 100000000010 )≈  144447965.8 , Δ≈-0.041137,infS( 100000000010 )= 107218482.42 , k(m)= 1.34723
G(100000000012) = 128533939;
inf( 100000000012 )≈  123239635.0 , Δ≈-0.041190,infS( 100000000012 )= 107218482.42 , k(m)= 1.14943
G(100000000014) = 238586864;
inf( 100000000014 )≈  228760131.1 , Δ≈-0.041187,infS( 100000000014 )= 107218482.42 , k(m)= 2.13359
G(100000000016) = 134188011;
inf( 100000000016 )≈  128662178.9 , Δ≈-0.041180,infS( 100000000016 )= 107218482.43 , k(m)= 1.2
G(100000000018) = 111942653;
inf( 100000000018 )≈  107340460.2 , Δ≈-0.041112,infS( 100000000018 )= 107218482.43 , k(m)= 1.00114
G(100000000020) = 298192310
inf( 100000000020 )≈  285915953.2 , Δ≈-0.041169,infS( 100000000020 )= 107218482.43 , k(m)= 2.66667
G(100000000022) = 124402721;
inf( 100000000022 )≈  119283555.6 , Δ≈-0.041150,infS( 100000000022 )= 107218482.43 , k(m)= 1.11253

具体的下界素对计算式:
inf( 100000000000 ) = 1/(1+ .21 )*( 100000000000 /2 -2)*p(m) ≈ 142957976.6 , k(m)= 1.33333
inf( 100000000002 ) = 1/(1+ .21 )*( 100000000002 /2 -2)*p(m) ≈ 257491343.1 , k(m)= 2.40156
inf( 100000000004 ) = 1/(1+ .21 )*( 100000000004 /2 -2)*p(m) ≈ 107224584.4 , k(m)= 1.00006
inf( 100000000006 ) = 1/(1+ .21 )*( 100000000006 /2 -2)*p(m) ≈ 107245660.7 , k(m)= 1.00025
inf( 100000000008 ) = 1/(1+ .21 )*( 100000000008 /2 -2)*p(m) ≈ 214436964.8 , k(m)= 2
inf( 100000000010 ) = 1/(1+ .21 )*( 100000000010 /2 -2)*p(m) ≈ 144447965.8 , k(m)= 1.34723
inf( 100000000012 ) = 1/(1+ .21 )*( 100000000012 /2 -2)*p(m) ≈ 123239635.0 , k(m)= 1.14943
inf( 100000000014 ) = 1/(1+ .21 )*( 100000000014 /2 -2)*p(m) ≈ 228760131.1 , k(m)= 2.13359
inf( 100000000016 ) = 1/(1+ .21 )*( 100000000016 /2 -2)*p(m) ≈ 128662178.9 , k(m)= 1.2
inf( 100000000018 ) = 1/(1+ .21 )*( 100000000018 /2 -2)*p(m) ≈ 107340460.2 , k(m)= 1.00114
inf( 100000000020 ) = 1/(1+ .21 )*( 100000000020 /2 -2)*p(m) ≈ 285915953.2 , k(m)= 2.66667
inf( 100000000022 ) = 1/(1+ .21 )*( 100000000022 /2 -2)*p(m) ≈ 119283555.6 , k(m)= 1.11253

显然,下界计算式inf(M)值略低于真值,相差实际上素对数量仅仅 4.2% 左右,可以说相当的接近。

因此区域下界计算值infS(m)也是相当接近连续偶数中的实际素对数值点的连接线的波动低点的,是名副其实的区域下界值。



 楼主| 发表于 2018-11-14 19:04 | 显示全部楼层
若要得到精度比较高的下界,那么仅仅需要把上面计算式中的修正系数μ=0.21略缩小就可以了。μ=0.21是小偶数区域统计的大值,估计在大偶数趋于无限大时的连乘式误差极限在其附近。而在我有能力计算的大偶数(百万亿以下) 的修正系数μ<0.185。

同样对1000亿的偶数,取 μ=0.162 ,则下界计算值的精度将得到大幅度提高。并且还能够使用在一个比较大的区域。后面我会分别对1000亿+100亿、1000亿+200亿、1000亿+300亿、…… 使用 μ=0.162的修正系数进行计算,看看能够达到下界的区域在哪里?

实例:
G(100000000000) = 149091160;
inf( 100000000000 )≈  148863296.6 , Δ≈-0.001528 ,infS( 100000000000 )= 111647472.43 , k(m)= 1.33333
G(100000000002) = 268556111;
inf( 100000000002 )≈  268127817.0 , Δ≈-0.001595 ,infS( 100000000002 )= 111647472.43 , k(m)= 2.40156
G(100000000004) = 111836359;
inf( 100000000004 )≈  111653826.5 , Δ≈-0.001632 ,infS( 100000000004 )= 111647472.43 , k(m)= 1.00006
G(100000000006) = 111843604;
inf( 100000000006 )≈  111675773.4 , Δ≈-0.001501 ,infS( 100000000006 )= 111647472.43 , k(m)= 1.00025
G(100000000008) = 223655943;
inf( 100000000008 )≈  223294944.9 , Δ≈-0.001614 ,infS( 100000000008 )= 111647472.43 , k(m)= 2
G(100000000010) = 150645060;
inf( 100000000010 )≈  150414834.4 , Δ≈-0.001528,infS( 100000000010 )= 111647472.44 , k(m)= 1.34723
G(100000000012) = 128533939;
inf( 100000000012 )≈  128330428.1 , Δ≈-0.001583,infS( 100000000012 )= 111647472.44 , k(m)= 1.14943
G(100000000014) = 238586864;
inf( 100000000014 )≈  238209773.7 , Δ≈-0.001581,infS( 100000000014 )= 111647472.44 , k(m)= 2.13359
G(100000000016) = 134188011;
inf( 100000000016 )≈  133976966.9 , Δ≈-0.001573,infS( 100000000016 )= 111647472.44 , k(m)= 1.2
G(100000000018) = 111942653;
inf( 100000000018 )≈  111774488.9 , Δ≈-0.001502,infS( 100000000018 )= 111647472.45 , k(m)= 1.00114
G(100000000020) = 298192310;
inf( 100000000020 )≈  297726593.2 , Δ≈-0.001562,infS( 100000000020 )= 111647472.45 , k(m)= 2.66667
G(100000000022) = 124402721;
inf( 100000000022 )≈  124210930.6 , Δ≈-0.001542,infS( 100000000022 )= 111647472.45 , k(m)= 1.11253

Sp( 100000000000 ) = 1/(1+ .162 )*( 100000000000 /2 -2)*p(m) ≈ 148863296.6 , k(m)= 1.33333
Sp( 100000000002 ) = 1/(1+ .162 )*( 100000000002 /2 -2)*p(m) ≈ 268127817 , k(m)= 2.40156
Sp( 100000000004 ) = 1/(1+ .162 )*( 100000000004 /2 -2)*p(m) ≈ 111653826.5 , k(m)= 1.00006
Sp( 100000000006 ) = 1/(1+ .162 )*( 100000000006 /2 -2)*p(m) ≈ 111675773.4 , k(m)= 1.00025
Sp( 100000000008 ) = 1/(1+ .162 )*( 100000000008 /2 -2)*p(m) ≈ 223294944.9 , k(m)= 2
Sp( 100000000010 ) = 1/(1+ .162 )*( 100000000010 /2 -2)*p(m) ≈ 150414834.4 , k(m)= 1.34723
Sp( 100000000012 ) = 1/(1+ .162 )*( 100000000012 /2 -2)*p(m) ≈ 128330428.1 , k(m)= 1.14943
Sp( 100000000014 ) = 1/(1+ .162 )*( 100000000014 /2 -2)*p(m) ≈ 238209773.7 , k(m)= 2.13359
Sp( 100000000016 ) = 1/(1+ .162 )*( 100000000016 /2 -2)*p(m) ≈ 133976966.9 , k(m)= 1.2
Sp( 100000000018 ) = 1/(1+ .162 )*( 100000000018 /2 -2)*p(m) ≈ 111774488.9 , k(m)= 1.00114
Sp( 100000000020 ) = 1/(1+ .162 )*( 100000000020 /2 -2)*p(m) ≈ 297726593.2 , k(m)= 2.66667
Sp( 100000000022 ) = 1/(1+ .162 )*( 100000000022 /2 -2)*p(m) ≈ 124210930.6 , k(m)= 1.11253

 楼主| 发表于 2018-11-16 11:25 | 显示全部楼层
对M=1000亿+100亿的连续偶数使用 μ=0.162的修正系数进行计算,看看计算值的精度会怎么样呢?
G(110000000000) = 180801081;
inf( 110000000000 )≈  180550355.5 , Δ≈-0.001387 ,infS( 110000000000 )= 121871489.95 ,
G(110000000002) = 122052830;
inf( 110000000002 )≈  121871490 , Δ≈-0.001486 ,infS( 110000000002 )= 121871489.95 ,
G(110000000004) = 250274235;
inf( 110000000004 )≈  249916814.3 , Δ≈-0.001428 ,infS( 110000000004 )= 121871489.95 ,
G(110000000006) = 133138114;
inf( 110000000006 )≈  132950716.3 , Δ≈-0.001408 ,infS( 110000000006 )= 121871489.95 ,
G(110000000008) = 129058444;
inf( 110000000008 )≈  128868117.6 , Δ≈-0.001475 ,infS( 110000000008 )= 121871489.96 ,
G(110000000010) = 325654239;
inf( 110000000010 )≈  325204309 , Δ≈-0.001382 ,infS( 110000000010 )= 121871489.96 ,
G(110000000012) = 156839107;
inf( 110000000012 )≈  156621995.1 , Δ≈-0.001384 ,infS( 110000000012 )= 121871489.96 ,
G(110000000014) = 122060507;
inf( 110000000014 )≈  121884990.7 , Δ≈-0.001438 ,infS( 110000000014 )= 121871489.96 ,
G(110000000016) = 244091411;
inf( 110000000016 )≈  243742979.9 , Δ≈-0.001427 ,infS( 110000000016 )= 121871489.97 ,
G(110000000018) = 122058317;
inf( 110000000018 )≈  121890323.5 , Δ≈-0.001376 ,infS( 110000000018 )= 121871489.97 ,
G(110000000020) = 165628934;
inf( 110000000020 )≈  165382515.2 , Δ≈-0.001488 ,infS( 110000000020 )= 121871489.97 ,
G(110000000022) = 271221025;
inf( 110000000022 )≈  270825533.3 , Δ≈-0.001458 ,infS( 110000000022 )= 121871489.97 ,

计算式:
inf( 110000000000 ) = 1/(1+ .162 )*( 110000000000 /2 -2)*p(m) ≈ 180550355.5 ,
inf( 110000000002 ) = 1/(1+ .162 )*( 110000000002 /2 -2)*p(m) ≈ 121871490 ,  
inf( 110000000004 ) = 1/(1+ .162 )*( 110000000004 /2 -2)*p(m) ≈ 249916814.3 ,
inf( 110000000006 ) = 1/(1+ .162 )*( 110000000006 /2 -2)*p(m) ≈ 132950716.3 ,
inf( 110000000008 ) = 1/(1+ .162 )*( 110000000008 /2 -2)*p(m) ≈ 128868117.6 ,
inf( 110000000010 ) = 1/(1+ .162 )*( 110000000010 /2 -2)*p(m) ≈ 325204309 ,  
inf( 110000000012 ) = 1/(1+ .162 )*( 110000000012 /2 -2)*p(m) ≈ 156621995.1 ,
inf( 110000000014 ) = 1/(1+ .162 )*( 110000000014 /2 -2)*p(m) ≈ 121884990.7 ,
inf( 110000000016 ) = 1/(1+ .162 )*( 110000000016 /2 -2)*p(m) ≈ 243742979.9 ,
inf( 110000000018 ) = 1/(1+ .162 )*( 110000000018 /2 -2)*p(m) ≈ 121890323.5 ,
inf( 110000000020 ) = 1/(1+ .162 )*( 110000000020 /2 -2)*p(m) ≈ 165382515.2 ,
inf( 110000000022 ) = 1/(1+ .162 )*( 110000000022 /2 -2)*p(m) ≈ 270825533.3 ,  

如果与1000亿的连续偶数的下界计算值的相对误差比较,可以发现,相对误差的绝对值基本上减小了0.0002左右。变化是比较缓慢的。
 楼主| 发表于 2018-11-18 10:25 | 显示全部楼层
对于再大一些的偶数,M=1000亿+200亿的连续偶数仍然使用 μ=0.162的修正系数进行计算,看看计算值的精度会怎么样呢?

G(120000000000) = 352503092;
inf( 120000000000 )≈  352131790.3 , Δ≈-0.001053 ,infS( 120000000000 )= 132049421.35 ,
G(120000000002) = 137230841;
inf( 120000000002 )≈  137072275.3 , Δ≈-0.001155 ,infS( 120000000002 )= 132049421.35 ,
G(120000000004) = 132188594;
inf( 120000000004 )≈  132049421.4 , Δ≈-0.001053 ,infS( 120000000004 )= 132049421.35 ,
G(120000000006) = 280130367;
inf( 120000000006 )≈  279807448.7 , Δ≈-0.001153 ,infS( 120000000006 )= 132049421.35 ,
G(120000000008) = 158634730;
inf( 120000000008 )≈  158459305.6 , Δ≈-0.001106 ,infS( 120000000008 )= 132049421.35 ,
G(120000000010) = 209105088;
inf( 120000000010 )≈  208865513.7 , Δ≈-0.001146 ,infS( 120000000010 )= 132049421.36 ,
G(120000000012) = 267143187;
inf( 120000000012 )≈  266851430.9 , Δ≈-0.001092 ,infS( 120000000012 )= 132049421.36 ,
G(120000000014) = 132197362;
inf( 120000000014 )≈  132051403.6 , Δ≈-0.001104 ,infS( 120000000014 )= 132049421.36 ,
G(120000000016) = 144860746;
inf( 120000000016 )≈  144705741.9 , Δ≈-0.001070 ,infS( 120000000016 )= 132049421.36 ,
G(120000000018) = 267816270;
inf( 120000000018 )≈  267528697.8 , Δ≈-0.001074 ,infS( 120000000018 )= 132049421.37 ,
G(120000000020) = 176255697;
inf( 120000000020 )≈  176065895.2 , Δ≈-0.001077 ,infS( 120000000020 )= 132049421.37 ,
G(120000000022) = 158634821;
inf( 120000000022 )≈  158459305.6 , Δ≈-0.001106 ,infS( 120000000022 )= 132049421.37 ,

计算式:
inf( 120000000000 ) = 1/(1+ .162 )*( 120000000000 /2 -2)*p(m) ≈ 352131790.3 ,
inf( 120000000002 ) = 1/(1+ .162 )*( 120000000002 /2 -2)*p(m) ≈ 137072275.3 ,
inf( 120000000004 ) = 1/(1+ .162 )*( 120000000004 /2 -2)*p(m) ≈ 132049421.4 ,
inf( 120000000006 ) = 1/(1+ .162 )*( 120000000006 /2 -2)*p(m) ≈ 279807448.7 ,
inf( 120000000008 ) = 1/(1+ .162 )*( 120000000008 /2 -2)*p(m) ≈ 158459305.6 ,
inf( 120000000010 ) = 1/(1+ .162 )*( 120000000010 /2 -2)*p(m) ≈ 208865513.7 ,
inf( 120000000012 ) = 1/(1+ .162 )*( 120000000012 /2 -2)*p(m) ≈ 266851430.9 ,
inf( 120000000014 ) = 1/(1+ .162 )*( 120000000014 /2 -2)*p(m) ≈ 132051403.6 ,
inf( 120000000016 ) = 1/(1+ .162 )*( 120000000016 /2 -2)*p(m) ≈ 144705741.9 ,
inf( 120000000018 ) = 1/(1+ .162 )*( 120000000018 /2 -2)*p(m) ≈ 267528697.8 ,
inf( 120000000020 ) = 1/(1+ .162 )*( 120000000020 /2 -2)*p(m) ≈ 176065895.2 ,
inf( 120000000022 ) = 1/(1+ .162 )*( 120000000022 /2 -2)*p(m) ≈ 158459305.6 ,

显然相对误差绝对值要比1100亿的偶数小了一点,变化比较小。
因此在1300亿、1400亿时的连续偶数使用 μ=0.162的修正系数进行计算,不会出现正相对误差。
 楼主| 发表于 2018-11-21 20:06 | 显示全部楼层
本帖最后由 愚工688 于 2018-11-21 12:18 编辑

仍然使用 μ=0.162的修正系数对1300亿起的连续偶数的素数对数量进行计算,看看计算值的精度会怎么样呢?
G(130000000000) = 206957741;
inf( 130000000000 )≈  206780555 , Δ≈-0.000856 ,infS( 130000000000 )= 142161631.58 ,
G(130000000002) = 291494087;
inf( 130000000002 )≈  291257976.9 , Δ≈-0.000810 ,infS( 130000000002 )= 142161631.59 ,
G(130000000004) = 170724988;
inf( 130000000004 )≈  170593957.9 , Δ≈-0.000767 ,infS( 130000000004 )= 142161631.59 ,
G(130000000006) = 142661257;
inf( 130000000006 )≈  142542144.6 , Δ≈-0.000835 ,infS( 130000000006 )= 142161631.59 ,
G(130000000008) = 303509249;
inf( 130000000008 )≈  303278147.4 , Δ≈-0.000761 ,infS( 130000000008 )= 142161631.59 ,
G(130000000010) = 189710906;
inf( 130000000010 )≈  189562218 , Δ≈-0.000784 ,infS( 130000000010 )= 142161631.59 ,
G(130000000012) = 142939305;
inf( 130000000012 )≈  142810035.1 , Δ≈-0.000904 ,infS( 130000000012 )= 142161631.6 ,
G(130000000014) = 292350558;
inf( 130000000014 )≈  292127799.5 , Δ≈-0.000762 ,infS( 130000000014 )= 142161631.6 ,
G(130000000016) = 150652254;
inf( 130000000016 )≈  150524080.5 , Δ≈-0.000851 ,infS( 130000000016 )= 142161631.6 ,
G(130000000018) = 175622063;
inf( 130000000018 )≈  175468071 , Δ≈-0.000877 ,infS( 130000000018 )= 142161631.6 ,
G(130000000020) = 421565863;
inf( 130000000020 )≈  421219649.2 , Δ≈-0.000821 ,infS( 130000000020 )= 142161631.6 ,
G(130000000022) = 149041659;
inf( 130000000022 )≈  148931233.1 , Δ≈-0.000741 ,infS( 130000000022 )= 142161631.61 ,

计算式:
inf( 130000000000 ) = 1/(1+ .162 )*( 130000000000 /2 -2)*p(m) ≈ 206780555 ,
inf( 130000000002 ) = 1/(1+ .162 )*( 130000000002 /2 -2)*p(m) ≈ 291257976.9 ,
inf( 130000000004 ) = 1/(1+ .162 )*( 130000000004 /2 -2)*p(m) ≈ 170593957.9 ,
inf( 130000000006 ) = 1/(1+ .162 )*( 130000000006 /2 -2)*p(m) ≈ 142542144.6 ,
inf( 130000000008 ) = 1/(1+ .162 )*( 130000000008 /2 -2)*p(m) ≈ 303278147.4 ,
inf( 130000000010 ) = 1/(1+ .162 )*( 130000000010 /2 -2)*p(m) ≈ 189562218 ,
inf( 130000000012 ) = 1/(1+ .162 )*( 130000000012 /2 -2)*p(m) ≈ 142810035.1 ,
inf( 130000000014 ) = 1/(1+ .162 )*( 130000000014 /2 -2)*p(m) ≈ 292127799.5 ,
inf( 130000000016 ) = 1/(1+ .162 )*( 130000000016 /2 -2)*p(m) ≈ 150524080.5 ,
inf( 130000000018 ) = 1/(1+ .162 )*( 130000000018 /2 -2)*p(m) ≈ 175468071 ,
inf( 130000000020 ) = 1/(1+ .162 )*( 130000000020 /2 -2)*p(m) ≈ 421219649.2 ,  
inf( 130000000022 ) = 1/(1+ .162 )*( 130000000022 /2 -2)*p(m) ≈ 148931233.1 ,

正如前贴所预测的那样,相对误差绝对值进一步缩小,没有出现正值。由于相对误差的波动幅度在万分之二、三左右,因此在1400亿附近的偶数仍然不会出现正相对误差值。
虽然说素数连乘式的相对误差的偏移是缓慢离开0位的,但是100亿的间隔是比较大的,预计在1600亿偶数是会出现正相对误差值的可能。
以后的帖子会逐步的进行验证看看是否如此。

 楼主| 发表于 2018-11-21 22:03 | 显示全部楼层
验证一下1300亿的区域下界计算值的精度:
区域下界计算值= 142161631.6 ,向上取整=142161632,(见5#楼)

130000000000后面连续100个偶数的素对数量如下:其中的最小值是   142268641 ,
因此区域下界计算值的计算精度=142161632/ 142268641=0.99924783846,
应该说是属于比较高精度的下界计算值。

G(130000000000) = 206957741
G(130000000002) = 291494087
G(130000000004) = 170724988
G(130000000006) = 142661257
G(130000000008) = 303509249
G(130000000010) = 189710906
G(130000000012) = 142939305
G(130000000014) = 292350558
G(130000000016) = 150652254
G(130000000018) = 175622063
G(130000000020) = 421565863
G(130000000022) = 149041659
G(130000000024) =      142268641  (*最小)
G(130000000026) = 310408281
G(130000000028) = 151170935
G(130000000030) = 190398684
G(130000000032) = 342820857
G(130000000034) =     142273682
G(130000000036) = 146556339
G(130000000038) = 296873085
G(130000000040) = 189769391
G(130000000042) = 170692529
G(130000000044) = 284951223
G(130000000046) = 171888323
G(130000000048) =      142276951
G(130000000050) = 379400077
G(130000000052) = 155219245
G(130000000054) = 150683961
G(130000000056) = 290865262
G(130000000058) =        142291374
G(130000000060) = 227642531
G(130000000062) = 292704703
G(130000000064) = 158079537
G(130000000066) =       142272435
G(130000000068) = 299617302
G(130000000070) = 195379909
G(130000000072) =       142276635
G(130000000074) = 341910066
G(130000000076) = 151764846
G(130000000078) = 156278384
G(130000000080) = 379457067
G(130000000082) =      142281981
G(130000000084) = 142355220
G(130000000086) = 316411181
G(130000000088) = 177964718
G(130000000090) = 197273968
G(130000000092) = 310371932
G(130000000094) = 142575964
G(130000000096) = 148731017
G(130000000098) = 284536541
G(130000000100) = 189705522
G(130000000102) = 170748959
G(130000000104) = 313378321
G(130000000106) =      142294135
G(130000000108) = 158088865
G(130000000110) = 417199901
G(130000000112) =     142287656
G(130000000114) = 151091415
G(130000000116) = 341482435
G(130000000118) = 142364962
G(130000000120) = 189703435
G(130000000122) = 284553563
G(130000000124) = 142615298
G(130000000126) = 142281192
G(130000000128) = 285350853
G(130000000130) = 292175037
G(130000000132) = 142314333
G(130000000134) = 284584774
G(130000000136) = 143074798
G(130000000138) = 144396066
G(130000000140) = 379405220
G(130000000142) = 142328014
G(130000000144) = 182791400
G(130000000146) = 288601199
G(130000000148) = 142330044
G(130000000150) = 193921889
G(130000000152) = 327238290
G(130000000154) = 147550686
G(130000000156) = 155254019
G(130000000158) = 341479749
G(130000000160) = 202372114
G(130000000162) =      142286381
G(130000000164) = 285311803
G(130000000166) = 147749302
G(130000000168) = 152053710
G(130000000170) = 385461080
G(130000000172) = 172417844
G(130000000174) = 161934315
G(130000000176) = 290131377
G(130000000178) = 153960521
G(130000000180) = 189711631
G(130000000182) = 311084224
G(130000000184) = 144788434
G(130000000186) = 170735324
G(130000000188) = 284574957
G(130000000190) = 190250321
G(130000000192) = 146001788
G(130000000194) = 284552808
G(130000000196) = 158079517
G(130000000198) =     142273373

 楼主| 发表于 2018-11-24 12:49 | 显示全部楼层
仍然使用 μ=0.162的修正系数对1400亿起的连续偶数的素数对数量进行计算,看看区域素对下界计算值的精度会怎么样呢?

G(140000000000) = 243685341;
inf( 140000000000 )≈  243569424.5 , Δ≈-0.0004757,infS( 140000000000 )= 152230890.33 , k(m)= 1.6
G(140000000002) = 155285474;
inf( 140000000002 )≈  155215809.8 , Δ≈-0.0004486,infS( 140000000002 )= 152230890.33 , k(m)= 1.01961
G(140000000004) = 313780435;
inf( 140000000004 )≈  313627946.5 , Δ≈-0.0004860,infS( 140000000004 )= 152230890.33 , k(m)= 2.06021
G(140000000006) = 172925643;
inf( 140000000006 )≈  172843261.8 , Δ≈-0.0004764,infS( 140000000006 )= 152230890.34 , k(m)= 1.1354
G(140000000008) = 174152737;
inf( 140000000008 )≈  174063267.1 , Δ≈-0.0005137,infS( 140000000008 )= 152230890.34 , k(m)= 1.14342
G(140000000010) = 443043007;
inf( 140000000010 )≈  442853499.2 , Δ≈-0.0004277,infS( 140000000010 )= 152230890.34 , k(m)= 2.90909
G(140000000012) = 154830853;
inf( 140000000012 )≈  154762298.5 , Δ≈-0.0004428,infS( 140000000012 )= 152230890.34 , k(m)= 1.01663
G(140000000014) = 184675290;
inf( 140000000014 )≈  184581032.6 , Δ≈-0.0005104,infS( 140000000014 )= 152230890.34 , k(m)= 1.21251
G(140000000016) = 304633955;
inf( 140000000016 )≈  304497720.1 , Δ≈-0.0004472,infS( 140000000016 )= 152230890.35 , k(m)= 2.00024
G(140000000018) = 153352034;
inf( 140000000018 )≈  153291981.0 , Δ≈-0.0003916,infS( 140000000018 )= 152230890.35 , k(m)= 1.00697
G(140000000020) = 203067287;
inf( 140000000020 )≈  202974520.5 , Δ≈-0.0004568,infS( 140000000020 )= 152230890.35 , k(m)= 1.33333
G(140000000022) = 312028793;
inf( 140000000022 )≈  311887677.8 , Δ≈-0.0004523,infS( 140000000022 )= 152230890.35 , k(m)= 2.04878
time start =11:45:39,time end =12:02:33 ,time use =

计算式:
inf( 140000000000 ) = 1/(1+ .162 )*( 140000000000 /2 -2)*p(m) ≈ 243569424.5 ,
inf( 140000000002 ) = 1/(1+ .162 )*( 140000000002 /2 -2)*p(m) ≈ 155215809.8 ,
inf( 140000000004 ) = 1/(1+ .162 )*( 140000000004 /2 -2)*p(m) ≈ 313627946.5 ,
inf( 140000000006 ) = 1/(1+ .162 )*( 140000000006 /2 -2)*p(m) ≈ 172843261.8 ,
inf( 140000000008 ) = 1/(1+ .162 )*( 140000000008 /2 -2)*p(m) ≈ 174063267.1 ,
inf( 140000000010 ) = 1/(1+ .162 )*( 140000000010 /2 -2)*p(m) ≈ 442853499.2 ,
inf( 140000000012 ) = 1/(1+ .162 )*( 140000000012 /2 -2)*p(m) ≈ 154762298.5 ,
inf( 140000000014 ) = 1/(1+ .162 )*( 140000000014 /2 -2)*p(m) ≈ 184581032.6 ,
inf( 140000000016 ) = 1/(1+ .162 )*( 140000000016 /2 -2)*p(m) ≈ 304497720.1 ,
inf( 140000000018 ) = 1/(1+ .162 )*( 140000000018 /2 -2)*p(m) ≈ 153291981 ,  
inf( 140000000020 ) = 1/(1+ .162 )*( 140000000020 /2 -2)*p(m) ≈ 202974520.5 ,
inf( 140000000022 ) = 1/(1+ .162 )*( 140000000022 /2 -2)*p(m) ≈ 311887677.8 ,


正如前面贴子所预测的那样,相对误差绝对值进一步缩小,1400亿附近的偶数没有出现正值。
由于相对误差的波动幅度在万分之二、三左右,因此在1500亿附近的偶数仍然不会出现正相对误差值。
 楼主| 发表于 2018-11-24 17:21 | 显示全部楼层
再验证一下1400亿的区域下界计算值的精度:

区域下界计算值=  152230890.33 ,向上取整=152,230,891,(见7#楼)

验证范围为1400亿前后各100个偶数的素对真值。
为防止素对真值数据过长,把素对真值1.6亿以上的偶数删除,仅仅保留素对真值1.6亿以下的偶数,以验证区域下界计算值的精度。
其中区域最低点 G(140000000164) =152284364,
区域下界计算值的精度 jdz =152230891/152284364≈0.99964886; 是比较高的下界计算值的计算精度。

在1400亿±200的这区域的偶数中。其中素数对数量的最高值为G(140000000070) = 487345742。
为什么这个偶数的素对数量会这么高呢?
因为此偶数含有奇素因子3、5、7,140000000070=2*3*5*7*666666667,
其素因子系数 K(m)=(3-1)/(3-2)*(5-1)/(5-2)*(7-1)/(7-2)=3.2,
区域下界计算值 152230891×3.2=487138851.2
高点计算值精度=487138851.2/487345742≈0.99957547,也是很不错的计算精度。


G(139999999800) = 433285636
G(139999999808) = 153288004
G(139999999814) =    152299906
G(139999999816) = 153249954
G(139999999826) = 152885572
G(139999999834) = 154054051
G(139999999838) = 154177993
G(139999999844) = 152561458
G(139999999852) =      152298574
G(139999999856) = 152340516
G(139999999858) = 157938771
G(139999999862) = 152932849
G(139999999864) = 154655538
G(139999999882) = 152676379
G(139999999886) = 155238615
G(139999999892) = 152669029
G(139999999894) = 155681377
G(139999999918) = 152307181
G(139999999922) = 152312651
G(139999999924) = 152906618
G(139999999928) = 152628571
G(139999999934) = 156659442
G(139999999936) = 156186635
G(139999999946) = 154958178
G(139999999948) = 152302541
G(139999999952) = 152309135
G(139999999954) = 152524489
G(139999999966) = 152689585
G(139999999976) = 153038056
G(139999999978) =    152298380
G(139999999982) = 152665543
G(139999999994) =    152297224
G(139999999996) =    152289608
G(140000000002) = 155285474
G(140000000012) = 154830853
G(140000000018) = 153352034
G(140000000024) = 152313535
G(140000000032) = 157933666
G(140000000038) = 152333956
G(140000000044) = 152595642
G(140000000048) = 155972373
G(140000000054) = 157541545
G(140000000066) = 152306534
G(140000000068) = 156656645
G(140000000070) = 487345742****区域高点
G(140000000072) = 152321483
G(140000000078) = 153357712
G(140000000086) = 152305761
G(140000000092) = 152940384
G(140000000104) = 152415883
G(140000000116) = 157702086
G(140000000122) = 155969933
G(140000000128) = 152668240
G(140000000132) = 152360911
G(140000000134) =    152286134
G(140000000138) =    152299722
G(140000000144) = 159547332
G(140000000146) = 152308691
G(140000000152) =    152298757
G(140000000156) = 156783550
G(140000000158) = 152513015
G(140000000164) =    152284364**区域低点
G(140000000174) = 153160547
G(140000000186) = 153095131
G(140000000188) = 153180126
G(140000000194) = 157156895
G(140000000198) =    152299631
G(140000000200) = 203072521

count = 201, algorithm = 2, working threads = 2, time use 89.973 sec

 楼主| 发表于 2018-11-27 13:12 | 显示全部楼层
本帖最后由 愚工688 于 2018-11-27 11:23 编辑

在7楼我指出,由于大偶数的下界计算值的相对误差的波动幅度在万分之二、三左右,因此使用 μ=0.162的修正系数对1500亿起的连续偶数的素数对数量进行计算,仍然不会出现正相对误差值。
看看我的估算的怎么样?

G(150000000000) = 432693233;
inf( 150000000000 )≈  432611673 , Δ≈-0.0001885,infS( m )= 162229377.38 , k(m)= 2.66667
G(150000000002) = 162281514;
inf( 150000000002 )≈  162229377.4 , Δ≈-0.000321,infS( m )= 162229377.38 , k(m)= 1
G(150000000004) = 173090450;
inf( 150000000004 )≈  173052270.7 , Δ≈-0.0002206,infS( m )= 162229377.38 , k(m)= 1.06671
G(150000000006) = 324533701;
inf( 150000000006 )≈  324477220.4 , Δ≈-0.0001740,infS( m )= 162229377.39 , k(m)= 2.00011
G(150000000008) = 163640122;
inf( 150000000008 )≈  163599942.2 , Δ≈-0.0002455,infS( m )= 162229377.39 , k(m)= 1.00845
G(150000000010) = 259646691;
inf( 150000000010 )≈  259567003.8 , Δ≈-0.0003069,infS( m )= 162229377.39 , k(m)= 1.6
G(150000000012) = 324534559;
inf( 150000000012 )≈  324458754.8 , Δ≈-0.0002336,infS( m )= 162229377.39 , k(m)= 2
G(150000000014) = 166666276;
inf( 150000000014 )≈  166627941.1 , Δ≈-0.0002300,infS( m )= 162229377.4 , k(m)= 1.02711
G(150000000016) = 162262009;
inf( 150000000016 )≈  162229377.4 , Δ≈-0.0002011,infS( m )= 162229377.4 , k(m)= 1
G(150000000018) = 373009121;
inf( 150000000018 )≈  372941097.5 , Δ≈-0.0001824,infS( m )= 162229377.4 , k(m)= 2.29885
G(150000000020) = 237083721;
inf( 150000000020 )≈  237037741.1 , Δ≈-0.0001939,infS( m )= 162229377.4 , k(m)= 1.46113
G(150000000022) = 162255812;
inf( 150000000022 )≈  162229377.4 , Δ≈-0.0001629,infS( 150000000022 )= 162229377.4 , k(m)= 1

计算式:
inf( 150000000000 ) = 1/(1+ .162 )*( 150000000000 /2 -2)*p(m) ≈ 432611673 ,
inf( 150000000002 ) = 1/(1+ .162 )*( 150000000002 /2 -2)*p(m) ≈ 162229377.4 ,
inf( 150000000004 ) = 1/(1+ .162 )*( 150000000004 /2 -2)*p(m) ≈ 173052270.7 ,
inf( 150000000006 ) = 1/(1+ .162 )*( 150000000006 /2 -2)*p(m) ≈ 324477220.4 ,
inf( 150000000008 ) = 1/(1+ .162 )*( 150000000008 /2 -2)*p(m) ≈ 163599942.2 ,
inf( 150000000010 ) = 1/(1+ .162 )*( 150000000010 /2 -2)*p(m) ≈ 259567003.8 ,
inf( 150000000012 ) = 1/(1+ .162 )*( 150000000012 /2 -2)*p(m) ≈ 324458754.8 ,
inf( 150000000014 ) = 1/(1+ .162 )*( 150000000014 /2 -2)*p(m) ≈ 166627941.1 ,
inf( 150000000016 ) = 1/(1+ .162 )*( 150000000016 /2 -2)*p(m) ≈ 162229377.4 ,
inf( 150000000018 ) = 1/(1+ .162 )*( 150000000018 /2 -2)*p(m) ≈ 372941097.5 ,
inf( 150000000020 ) = 1/(1+ .162 )*( 150000000020 /2 -2)*p(m) ≈ 237037741.1 ,
inf( 150000000022 ) = 1/(1+ .162 )*( 150000000022 /2 -2)*p(m) ≈ 162229377.4 ,

time start =23:16:06time end =23:32:54

实际的验证与我的估算是一致的。
当然再大一些到1600亿附近的偶数,使用 μ=0.162的修正系数进行计算,则出现正的相对误差是很可能的。
 楼主| 发表于 2018-11-28 17:51 | 显示全部楼层
本帖最后由 愚工688 于 2018-11-28 10:01 编辑

如同8楼那样,验证一下1500亿的区域下界计算值的精度,验证范围为1500亿前后各100个偶数的素对真值。

区域下界计算值=   162229377.38  ,向上取整= 162229378 ,(见9#楼)
同样把中间素数对数量大于162300000的偶数删除,仅仅保留一个最大的素对数量的偶数。
则区域下界计算值的精度 jdz =162229378 /162249080≈0.99987857,是比较高的计算精度。

同样,对于区域最高点: G(149999999940) = 519480446(最大)
因式分解: 149999999940 = 2 * 2 * 3 * 3 * 5 * 7 * 2381 * 49999 ;
素因子系数K(m)=(3-1)/(3-2)*(5-1)/(5-2)*(7-1)/(7-2)*(2381-1)/(2381-2)*(49999-1)/(49999-2)≈3.20141,
162229378 ×3.20141≈519362613,
高点计算值精度=519362613/519480446≈0.999773;确实也是比较高的计算精度。

G(149999999800) = 276955843
G(149999999804) = 162266475
G(149999999816) = 162276363
G(149999999822) = 162258479
G(149999999848) = 162285195
G(149999999858) = 162256650
G(149999999866) = 162261723
G(149999999872) = 162280622
   G(149999999878) = 162249080(最小)
G(149999999888) = 162264932
G(149999999918) = 162270808
G(149999999932) = 162269020
    G(149999999940) = 519480446(最大)
G(149999999978) = 162265131
G(149999999984) = 162254475
G(150000000002) = 162281514
G(150000000016) = 162262009
G(150000000022) = 162255812
G(150000000032) = 162282058
G(150000000056) = 162270281
G(150000000058) = 162278940
G(150000000068) = 162254329
G(150000000086) = 162262936
G(150000000092) = 162271231
G(150000000166) = 162279709
G(150000000184) = 162271217
G(150000000196) = 162287346
G(150000000200) = 225767592

count = 201,
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2024-5-22 15:45 , Processed in 0.098633 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表