|
楼主 |
发表于 2011-7-29 21:14
|
显示全部楼层
[原创] 献给全人类的礼物(一)
哥德巴赫猜想:对于每一个大偶数 2n 能否表为二个奇素数之和 ?取决于“奇素数+奇素数”的总个数的多与少!如果总个数多,足够等于每一个 2n ,则猜想必成立,否则猜想用必不成立!以 π(2n) 代表小于 2n 的素数的个数,则用小于 2n 的素数组成的“奇素数+奇素数”的总个数是 π(2n)×π(2n),而猜想成不成立?只要再做一下除法就行了,即做 π(2n)×π(2n)÷n 或者 π(2n)×π(2n)÷2n ;对于小偶数就不必说了,当 n→∞ 时,将素数定理代入,可知 [π(2n)×π(2n)÷n]→∞, [π(2n)×π(2n)÷2n]→∞, 因此猜想必成立,每一个大偶数肯定是二个奇素数之和!
我真不知前人证明的一系列伟大的命题 1+2,1+3,……1+c,2+3,3+3,……,a+b 的科学性在哪里?谁可以为我解此惑?
|
|