|
楼主 |
发表于 2012-2-28 11:58
|
显示全部楼层
[讨论]论哥猜成立的必要条件
补充
素数和对较少的是:
3,当A=(2n+1)(2a+1),且2n+1,2a+1均为素数时,分类讨论如下;
当n=a时,(2n+1)^2=4n^2+4n+1,则(2n+1)^2+1=4n^2+4n+2,所以(A+1)/2=2n^2+2n+1,(2n^2+2n+1)/(2n+1)=n(取整数部分),故随着n值增大,奇合数对增多,但不一定能使素数和合数比例反转,此时若A不能被3整除,则与3对应的必为A除以3的一次同余系,其中有素数但最多只有一个可能与3对应,若与3对应的是合数,则至少还有一个合数与3的倍数(如9)对应,且是A除以3的一次同余系,与57……对应的亦如此,故下排一个素数至少抵消上排2个合数,设Pi为下一排最大素数,则2Pi<2A,1<A/Pi<2,当试到Pi时,上排早已没有合数,不会再有奇合数,下排至少还剩Pi一个素数,故此时素数对至少一对成立。
当a=n+2,4,6,8……时,则A/(2n+1)>n,A/(2a+1)<n,二者之和远大于n,则同理会有多对奇合数被消耗,最后实现素数和奇合数的比例反转,故此时素数对至少一对成立。
如:2*49=98
这段说理不透彻,补充为:
3,当A=(2n+1)(2a+1),且2n+1,2a+1均为素数时,分类讨论如下;
当n=a时,(2n+1)^2=4n^2+4n+1,则(2n+1)^2+1=4n^2+4n+2,所以(A+1)/2=2n^2+2n+1,(2n^2+2n+1)/(2n+1)=n(取整数部分),故随着n值增大,奇合数对增多,但不一定能使素数和合数比例反转,此时若A不能被3整除,则与3对应的必为A除以3的一次同余系,其中有素数但最多只有一个可能与3对应,若与3对应的是合数,则至少还有一个合数与3的倍数(如9)对应,且是A除以3的一次同余系,与57……对应的亦如此,故下排一个素数至少抵消上排2个合数,设Pi为下一排最大素数,则2Pi<2A,1<A/Pi<2,
由于几何平均值小于算术平均值,故根号2A<A=2A/2,所以,2A以内的合数全部为下排素数(A以内的素数的倍数构成),
当试到Pi时,上排早已没有合数,不会再有奇合数,下排至少还剩Pi一个素数,故此时素数对至少一对成立。
当a=n+2,4,6,8……时,则A/(2n+1)>n,A/(2a+1)<n,二者之和远大于n,则同理会有多对奇合数被消耗,最后实现素数和奇合数的比例反转,故此时素数对至少一对成立。
如:2*49=98
49 51……61……67……79……
49 47……37……31……19……共3对素数对。
欢迎批评指导,使文章完善些! |
|