|
楼主 |
发表于 2024-1-8 19:23
|
显示全部楼层
注释
1. 译者注:马尔萨斯(Thomas Robert Malthus,1766 -1834),英国教士、人口学家、政治经济学家,以其人口理论闻名于世。
2. [7]Uber die Grundlagen der Quantenmechanik. With D. Hilbert and L. Nordheim. Math. Ann. vol. 98 (1927) pp. 1-30.
3. 译者注:诺德海姆(Lothar Wolfgang Nordheim,1899-1985),德裔美籍物理学家,对量子理论、核物理、粒子物理均有贡献。
4. 有关原子现象的非相对论量子理论公理化现状,有一篇出色的简明总结,请参阅George Mackey的文章Quantum mechanics and Hilbert space, Amer. Math. Monthly, October, 1957, 并且仍然主要基于冯·诺伊曼的书《量子力学的数学基础》。
5. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik, Nachr. Ges. Wiss. G?ttingen (1927) pp. 245-272.
6. 这里不可能总结所涉及的数学论证。绝大多数物理学家仍然同意冯·诺伊曼的提议。这并不是说,与目前量子力学的数学表述不同的理论不允许隐变量存在。有关最近的讨论,请参阅科斯顿文集(第 9 卷),这是 1957 年 4 月 1 日至 4 月 4 日在布里斯托尔大学举行的科尔斯顿研究学会(Colston Research Society)第九届研讨会的会议记录,其中有玻姆(David Bohm),罗森菲尔德(Léon Rosenfeld)等人的讨论。
7. [33]Uber einen Hilfssatz der Variationsrechnung, Abh. Math. Sem. Hansischen Univ. vol. 8 (1930) pp. 28-31.
8. 译者注:Tibor Radó(1895-1965),匈牙利数学家,以解决Plateau问题而闻名。
9. [41]Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. U.S.A. vol. 18(1932) pp. 70-82.
10. 库普曼(Bernard Osgood Koopman,1900-1981),法裔美籍数学家,以遍历理论、概率论、统计理论和运筹学的基础工作而闻名。美国运筹学学会的创始成员和第六任主席。
11. 译者注:度量可递性质(Metric transitivity),可参考https://encyclopediaofmath.org/wiki/Metric_transitivity
12. [56]On compact solutions of operational-differential equations. I. With S. Bochner. Ann. of Math. vol. 36 (1935) pp. 255-291.
13. [80]Fourier integrals and metric geometry. With I. J. Schoenberg. Trans. Amer. Math. Soc. vol. 50 (1941) pp. 226-251.
14. [86]Approximative properties of matrices of high finite order, Portugaliae Mathematica vol. 3 (1942) pp. 1-62.
15. [91]Solution of linear systems of high order. With V. Bargmann and D, Montgomery. Report prepared for Navy BuOrd under Contract Nord-9596-25, Oct. 1946, 85 pp.
16. [94]Numerical inverting of matrices of high order. With H. H. Goldstine. Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1021-1099.
17. [109]Numerical inverting of matrices of high order, II. With H. H. Goldstine. Proc. Amer. Math. Soc. vol. 2 (1951) pp. 188-202.
18. Kuhn, H. W., & Tucker, A. W. (1958). John von Neumann’s work in the theory of games and mathematical economics. Bulletin of the American Mathematical Society, 64(3), 100–123. doi:10.1090/s0002-9904-1958-10209-8
19. [17]Zur Theorie der esellschaftsspiele, Math. Ann. vol. 100 (1928) pp. 295-320.
20. [72]Uber ein okonomisches Gleichungssystem und eine Verallgemeinerung Brouwerschen Fixpunktsatzes, Erg. eines Math. Coll., Vienna, edited by K. Menger, vol. 8, 1937, pp. 73-83.
21. [102]Solutions of games by differential equations. With G. W. Brown, "Contributions to the Theory of Games,n Ann. of Math. Studies, no. 24, Princeton University Press, 1950, pp. 73-79.
[113]A certain zero-sum two-person game equivalent to the optimal assignment problem. "Contributions to the Theory of Games,* Vol. II, Ann. Of Math. Studies, no. 28, Princeton University Press, 1953, pp. 5-12.
[114]Two variants of poker. With D. G. Gillies and J. P. Mayberry. "Contributions to the Theory of Games," Vol. II. Ann. of Math. Studies, no. 28, Princeton University Press 1953, pp. 13-50.
22. [90]Theory of games and economic behavior. With O. Morgenstern. Princeton University Press (1944, 1947, 1953) 625 pp.
23. 译者注:亚伯拉罕·瓦尔德(Abraham Wald,1902-1950),罗马尼亚裔美国统计学家。二战时在战机损伤问题中考虑了幸存者偏差问题。
24. 译者注:里奥尼德·赫维克兹(Leonid Hurwicz,1917-2008),2007 年诺贝尔经济学奖得主,开创了机制设计理论。
25. American Economic Review vol. 35 (1945) pp. 909-925.
26. 译者注:雅各布·马尔沙克(Jacob Marschak)经济学家,西方信息经济学创始人之一。1959 年,他发表《信息经济学家评论》一文,标志着信息经济学的诞生。
27. Journal of Political Economy vol. 54 (1946) pp. 97-115.
28. [84]The statistics of the gravitational field arising from a random distribution of stars, I. With S. Chandrasekhar. The Astrophysical Journal vol. 95 (1942) pp. 489-531.
[88]The statistics of the gravitational field arising from a random distribution of stars. II. The speed of fluctuations', dynamical friction*, spatial correlations. With S. Chandrasekhar. The Astrophysical Journal vol. 97 (1943) pp. 1-27.
29. [108]Discussion of the existence and uniqueness or multiplicity of solutions of theaerodynamical equations (Chapter 10) of the Problems of Cosmical Aerodynamics, Proceedings of the Symposium on the Motion of Gaseous Masses of Cosmical Dimensions held at Paris, August 16-19, 1949. Central Air Doc. Office, 1951, pp. 75-84.
30. [100]A method for the numerical calculation of hydrodynamic shocks. With R. D. Richtmyer. Journal of Applied Physics vol. 21 (1950) pp. 232-237.
31. 查尼(Jule Charney)和他在气象学问题上合作密切,可参考[104]Numerical integration of the barotropic vorticity equation. With J. G. Charney and R. Fjortoft. Tellus 2 (1950) pp. 237-254.
32. [120]Can we survive technology?, Fortune, June, 1955.
33. 译者注:借用了莎士比亚《暴风雨》的台词“the great globe itself”。
34. 译者注:ENIAC ,全称为 Electronic Numerical Integrator And Computer ,即电子数字积分计算机,于 1946 年 2 月 14 日在美国宣告诞生。ENIAC 是继 ABC(阿塔纳索夫-贝瑞计算机)之后的第二台电子计算机和第一台通用计算机。它是完全的电子计算机,能够编程,解决各种计算问题。
35. 译者注:关于闭合解,可参见 https://mathworld.wolfram.com/Closed-FormSolution.html
36. Hilbert: Problèmes futurs des Mathématiques, Comptes-Rendus, 2ème Congrès International de Mathématiques, Paris, 1900.
本文基于知识创作共享许可协议(CC BY-NC 4.0),译自 S. Ulam, John von Neumann 1903-1957, Bull. Amer. Math. Soc. 64 (1958), 1-49,
原文链接: https://www.ams.org/journals/bul ... 04-1958-10189-5.pdf
原创 Stanislaw Ulam 返朴 2024-01-04 08:01 发表于北京 |
|