数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 蔡家雄

勾股数新公式

  [复制链接]
发表于 2020-2-16 18:53 | 显示全部楼层
本帖最后由 朱明君 于 2020-2-16 10:55 编辑
蔡家雄 发表于 2020-2-16 10:47
原来,朱火华先生同样喜欢:

有的是:勾平方+股平方= 弦平方,


n<(x/2),则x为勾,
n≥(x/2),则x为股。

x<m-n,则x^2 + (m-n)^2 = (m+n)^2,
x>m-n,则(m-n)^2 + x^2 = (m+n)^2,
回复 支持 反对

使用道具 举报

发表于 2020-2-17 07:05 | 显示全部楼层
本帖最后由 朱明君 于 2020-2-16 23:07 编辑

朱火华勾股数组通解公式
这个公式是我研究出来的,解决了古今中外数学家勾股不分,ab不分的问题,
勾股定理的定义是短边为勾,长边为股,斜边为弦,即a<b<c,

①设(x/2)^2=mn,其中x为≥4的偶数,且m>n, m,n均为正整数
x<m-n,x为勾=a,m-n为股=b,m+n为弦=c,
x>m-n,x为股=b,m-n为勾=a,m+n为弦=c,
则a^2+b^2=c^2。
x<m-n,则x^2 + (m-n)^2 = (m+n)^2,
x>m-n,则(m-n)^2 + x^2 = (m+n)^2,
n<(x/2),则x为勾,
n≥(x/2),则x为股。
设(x/2)^2=mn,若mn一奇一偶没有大于1的公约数,则x^2 + (m-n)^2 = (m+n)^2
或(m-n)^2 + x^2 = (m+n)^2为勾股数本愿解数组。

②设x^2=mn,(其中x为≥3的奇数), 且m>n, m,n均为正整数
x<(m-n)/2,x为勾=a, (m-n)/2为股=b, (m+n)/2为弦=c,
x>[m-n]/2,x为股=b, (m-n)/2为勾=a, (m+n)/2为弦=c,
则a^2 +b^2=c^2。
x<(m-n)/2,则x^2 + [(m-n)/2]^2 = [(m+n)/2]^2,
x>(m-n)/2,则[(m-n)/2]^2 + x^2 = [(m+n)/2]^2,
n<[(x+1)/4],则x为勾,
n≥[(x+1)/4],则x为股。
设x^2=mn,若mn没有大于1的公约数,则x^2 + [(m-n)/2]^2 = [(m+n)/2]^2
或[(m-n)/2]^2 + x^2 = [(m+n)/2]^2为勾股数本愿解数组。

③设正整数z=x+y,且x<y<z,x,y均为正整数
z(y-x)<2xy,则z(y-x)为勾=a, 2xy为股=b, x^2+y^2为弦=c
z(y-x)>2xy,则2xy为勾=a, z(y-x)为股=b, x^2+y^2为弦=c
则a^2+b^2=c^2
z(y-x)<2xy,则[z(y-x)]^2+ (2xy)^2 = ( x^2+y^2)^2
z(y-x)>2xy,则(2xy)^2 + [z(y-x)]^2 = (x^2+y^2)^2
设z(奇数)=x+y,若xy没有大于1的公约数,则[z(y-x)]^2+ (2xy)^2 = ( x^2+y^2)^2
或(2xy)^2 + [z(y-x)]^2 = (x^2+y^2)^2为勾股数本愿解数组
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-2-17 08:32 | 显示全部楼层

原来,朱火华先生同样喜欢:

有的是:股平方+勾平方= 弦平方,

看来,朱火华先生同样喜欢:勾股不分,


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-2-17 09:39 | 显示全部楼层
本帖最后由 蔡家雄 于 2020-2-17 10:24 编辑



朱明君的点评:a=147, b=196, c=245,  没有公约数,

原来,朱火华先生的小学数学知识 —— 高深莫测!


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2020-2-17 15:05 | 显示全部楼层
感谢蔡老师指点,m^3-7=n^2有解。
回复 支持 反对

使用道具 举报

发表于 2020-2-17 19:06 | 显示全部楼层
蔡家雄 发表于 2020-2-17 10:43
由 m=12, n=3, m,n 一偶一奇,则 a^2+b^2=c^2 为本原勾股数组,
即 朱火华推出:9^2+12^2= 15^2 为本 ...

设(x/2)^2=mn,若mn一奇一偶没有大于1的公约数,则x^2 + (m-n)^2 = (m+n)^2
或(m-n)^2 + x^2 = (m+n)^2为勾股数本愿解数组。
回复 支持 反对

使用道具 举报

发表于 2020-2-17 19:06 | 显示全部楼层
蔡家雄 发表于 2020-2-17 10:43
由 m=12, n=3, m,n 一偶一奇,则 a^2+b^2=c^2 为本原勾股数组,
即 朱火华推出:9^2+12^2= 15^2 为本 ...

设(x/2)^2=mn,若mn一奇一偶没有大于1的公约数,则x^2 + (m-n)^2 = (m+n)^2
或(m-n)^2 + x^2 = (m+n)^2为勾股数本愿解数组。
回复 支持 反对

使用道具 举报

发表于 2020-2-17 19:17 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2020-2-19 18:03 | 显示全部楼层
本帖最后由 朱明君 于 2020-2-19 10:10 编辑
蔡家雄 发表于 2020-2-19 09:56
朱火华先生的

③设正整数z=x+y,且x1的公约数,


设z(奇数)=x+y,若xy没有大于1的公约数,
则[z(y-x)]^2+ (2xy)^2 = ( x^2+y^2)^2为勾股数本愿解数组。

7=1+6, 代入公式得:[7×(6-1)]^2+(2×1×6)^2=(1^2+6^2)^2  (本原解)
7=2+5, 代入公式得:[7×(5-2)]^2+(2×2×5)^2=(2^2+5^2)^2  (本原解)
7=3+4, 代入公式得:[7×(4-3)]^2+(2×3×4)^2=(3^2+4^2)^2  (本原解)

点评

朱火华先生同样喜欢:勾股不分,  发表于 2020-2-19 18:08
回复 支持 反对

使用道具 举报

发表于 2020-2-23 10:44 | 显示全部楼层
可惜呀!
               设,假设......都是没有理论的依据???!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2024-12-21 22:25 , Processed in 0.312500 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表