数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2244|回复: 49

\(\Large\color{red}{\textbf{不是蠢疯不想好,而是蠢疯种太孬.}}\)

[复制链接]
发表于 2024-6-26 00:57 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2024-7-8 16:33 编辑

其实蠢疯好不好,种有多孬这些事,我是不在乎的。所以一般根本不看他啼的猿声。他想怎么自蛋自捣,想怎么丢人现眼都请便。但有时候想通过他的狗屎帖子科普一下数学的有关议题。
蠢疯说 \(N_{\infty}\cap A_m^c = \varnothing\) 是错的,因为 \((N_{\infty}\cap A_m^c = \varnothing)\nRightarrow N_{\infty}=\varnothing\)。
首先,\(N_{\infty}\) 含于\(A_m\) 当然就与 \(A_m^c\) 没有公共成员,所以  \(N_{\infty}\cap A_m^c = \varnothing\)  的正确性是绝对的. 根本不以它能不能推出 \(N_{\infty}=\varnothing\) 为转移。其次,从每一步都有理有据的计算
\(N_{\infty}=N_{\infty}\cap\mathbb{N}=\displaystyle H_{\infty}\cap\bigcup_{n=1}^\infty A_n^c=\bigcup_{n=1}^\infty (N_{\infty}\cap A_n^c) =\bigcup_{n=1}^\infty\varnothing=\varnothing\)
知道蠢疯的 \((N_{\infty}\cap A_m^c=\varnothing)\not\hspace{-0.1cm}\Longrightarrow(N_{\infty}=\varnothing)\)命题也是错的.
只能说蠢疯尽力了,只是其种太孬了点.........而已。
发表于 2024-6-26 05:44 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-6-26 11:42 编辑


elim论证单减集合列的极限集\(N_∞=\phi\)的“理论”依据是\(\displaystyle\bigcup_{m=1}^∞ A_m^c=N\)。在这个理论依据下,elim对\(N_∞\)作如下变形【\(N_∞=N_∞\cap N\)\(=N_∞\cap\displaystyle\bigcup_{m=1}^∞ A_m^c\)\(=\displaystyle\bigcup_{m=1}^∞ (N_∞\cap A_m^c)=\phi\)。】e大掌门人的这个“发明”相当了得,利用它可“证明”任何非空集合B等于空集,从而导致\(\color{red}{若B≠\phi,则B=\phi}\)悖论。现按elim的“臭便”思维方式证明如下:
【证明】:因为\(B≠\phi\)(已知);
\(N=\displaystyle\bigcup_{m=1}^∞ A_m^c\)(e氏发明);所以,
\(B=B\cap N\)(定理:若\(A\subset B,则A=A\cap B\));所以:
\(B=B\cap\displaystyle\bigcup_{m=1}^∞ A_m^c\)(恒等变形);由于\(\displaystyle\bigcup_{m=1}^∞ A_m^c\)\(=(\displaystyle\bigcap_{m=1}^∞ A_m)^c\);所以
当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时,\(\displaystyle\bigcup_{m=1}^∞ A_m^c=N\)〔(德摩根定律(De Morgan's laws)〕;所以:\(B=B\cap N=B\cap\displaystyle\bigcup_{m=1}^∞ A_m^c=B\cap\phi=\phi\)。所以命题\(\color{red}{若B≠\phi,则B=\phi}\)得证.【证毕】
e大掌门现在你明白【\(N_∞=N_∞\N=\displaystyle\bigcup_{n=1}^∞(N_∞\cap A_n^c)=\phi\)是
直接导致\(A_1=A_2=……=N_∞=\phi\)的根本原因了吧?

点评

还是那句话,孬婊鸡没有也无法否认\(\mathbb{N}=\bigcup_{m=1}^n A_m^c\).  发表于 2024-6-26 13:34
回复 支持 反对

使用道具 举报

发表于 2024-6-26 11:43 | 显示全部楼层
elim 发表于 2024-6-26 11:15
蠢疯说:由于\(\displaystyle\bigcup_{m=1}^\infty A_m^c =\big(\bigcap_{m=1}^\infty A_m\big)^c\)
所以 ...


【勘误】原帖中〖当仅且当\((\displaystyle\bigcap_{m=1}^∞ A_m)^c)=\phi\)时〗属笔误。正确的应是〖当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时〗,谢谢帮我勘误,原帖己改过来了。

点评

孬婊鸡勘了笔误,但勘不了脑误,脑子已经被曹老嫖给操坏了。  发表于 2024-6-26 13:31
回复 支持 反对

使用道具 举报

发表于 2024-6-26 15:29 | 显示全部楼层
elim 发表于 2024-6-26 13:02
其实蠢疯好不好, 种有多孬这些事, 我是不在乎的。所以一般根本不屑
他所啼的猿声。他想怎么自蛋自捣,想怎 ...


1、【勘误】原帖中〖当仅且当\((\displaystyle\bigcap_{m=1}^∞ A_m)^c)=\phi\)时〗属笔误。正确的应是〖当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时〗,谢谢帮我勘误,原帖己改过来了。
2、\(N_∞\cap A_m^c=\phi\nRightarrow (N_∞\cup\A_m^c=\phi\)
因为\(N_∞\cap A_m^c=\phi\)的必要条件是\(N_∞\)与\(A_m^c\)无公共元素,并不排斥\(N_∞≠\phi\)如\(N_∞=\displaystyle\lim_{n→∞}\{n+1,n+2,……\}\)是否为空就不能由\( A_m\cap A_m^c=\phi\)推出。
3、因为当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\),所以【\N_∞=N_∞\cap N\)\(=N_∞\cap\displaystyle\bigcup_{m=1}^∞ A_m^c\)有循环论证之嫌!

点评

还是那句话,孬婊鸡没有也无法否认\(\mathbb{N}=\bigcup_{m=1}^n A_m^c\) 这条简单事实,因此这里不存在循环论证。  发表于 2024-6-27 09:44
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-27 00:41 | 显示全部楼层
勘误改过来。\(\displaystyle B=B\cap\mathbb{N}=B\cap\bigcup_{n=1}^\infty A_n^c \color{red}{\overset{?}{=}} B\cap\varnothing = \varnothing\) 就改不过来了。孬种咋改种?
回复 支持 反对

使用道具 举报

发表于 2024-6-27 15:43 | 显示全部楼层
elim 发表于 2024-6-27 05:52
令 \(A_m:=\{k\in\mathbb{N}: k> m\},\;\displaystyle N_{\infty}:=\bigcap_{n=1}^\infty A_n,\;E:=\bigcup ...

近半来elim在80多个主题下向春风晚霞发动了猛烈的进攻,近期所发帖文基本上都是宿帖,春风晚霞信守数学论辩〖讲理我陪,骂架我也陪〗这样平均每天都要处理(阅读或回复)至少100余篇帖文。为节约网络资源,为净化论坛环境,我殷切期待关注\(N_∞\)是否非空的网友到我的主题《欢迎文明赐教,拒绝青楼艳词》与我分享(教诲、批判均可)。从即日起对发表在那近100个主题下的宏论,一律回复〖为节约网络资源,您的回复己发在《欢迎文明赐教,拒绝青楼言词》主题下相关帖文之中供君参考!〗请擅长青楼技巧,毫无道德底线者自爱!一周后不再回复发表在其它主题下攻击我的文章,望攻击我者不要产的“春风晚霞已向我缴械投降”的错觉!

点评

大家都看得出来,孬婊鸡确实没有投降,但她的手中也确实没有“械”可缴。大家看到的只不过是个没穿衣服不要脸的臭婊子在疯狂骂街而已。  发表于 2024-6-27 21:48
回复 支持 反对

使用道具 举报

发表于 2024-6-28 07:00 | 显示全部楼层
elim 发表于 2024-6-28 02:27
\((0)\;\;\)对任意自然数\(m,\;\,m\in A_m^c.\;\color{grey}{(A_m^c:=\{n\in\mathbb{N}: n\le m\})}\)
\(( ...

〖为节约网络资源,您的回复己发在《欢迎文明赐教,拒绝青楼言词》主题下相关帖文之中供君参考!〗
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-28 07:40 | 显示全部楼层
蠢疯顽瞎的那个主题的贴文中有一段逻辑
\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c = B\cap\varnothing\) 取 \(B=\mathbb{N}\) 得  \(\displaystyle\bigcup_{n=1}^\infty A_n^c =\varnothing\).
估计蠢疯没那么孬,无奈蠢疯的种有点太孬。对吧?
回复 支持 反对

使用道具 举报

发表于 2024-6-28 07:52 | 显示全部楼层
elim 发表于 2024-6-28 07:47
\((0)\;\;\)对任意自然数\(m,\;\,m\in A_m^c.\;\color{grey}{(A_m^c:=\{n\in\mathbb{N}: n\le m\})}\)
\(( ...

〖为节约网络资源,您的回复己发在《欢迎文明赐教,拒绝青楼言词》主题下相关帖文之中供君参考!〗
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-28 07:58 | 显示全部楼层
春风晚霞 发表于 2024-6-27 16:52
〖为节约网络资源,您的回复己发在《欢迎文明赐教,拒绝青楼言词》主题下相关帖文之中供君参考!〗

蠢疯顽瞎不是不想好,就是种太孬。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2024-11-3 20:47 , Processed in 0.183594 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表