数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 5625|回复: 0

数学家故事·欧几里得

[复制链接]
发表于 2006-9-20 17:06 | 显示全部楼层 |阅读模式
数学家故事·欧几里得
  没有谁能够像伟大的希腊几何学家欧几里得那样,声誉经久不衰。有些人物,如拿破仑、亚里山大大帝和马丁·路德,他们生前的声望远比欧几里得大,但就长期而言,欧几里得的名望可能要比他们持久。
  欧几里得(Euclid,325 BC?- 265 BC?)
  尽管如此,欧几得一生的细节仍然鲜为人知。虽然我们知道他在大约公元前300年在埃及的亚历山大当过教师,然而他的出生及去世的日期则无法确定。我们甚至不知道他出生在哪个洲,更不知道他出生在哪个城市了。他写过另外几本书,其中有些流传至今。然而确立他历史地位的,主要是那本伟大的几何教科书《几何原本》。
  《几何原本》的重要性并不在于书中提出的哪一条定理。书中提出的几乎所有的定理在欧几里德之前就已经为人知晓,使用的许多证明亦是如此。欧几里得的伟大贡献在于他将这些材料做了整理,并在书中作了全面的系统阐述。这包括首次对公理和公设作了适当的选择(这是非常困难的工作,需要超乎寻常的判断力和洞察力)。然后,他仔细地将这些定理做了安排,使每一个定理与以前的定理在逻辑上前后一致。在需要的地方,他对缺少的步骤和木足的证明也作了补充。值得一提的是,《几何原本》虽然基本上是平面和立体几何的发展,也包括大量代数和数论的内容。
  《几何原本》作为教科书使用了两千多年。在形成文字的教科书之中,无疑它是最成功的。欧几里得的杰出工作,使以前类似的东西黯然失色。该书问世之后,很快取代了以前的几何教科书,而后者也就很快在人们的记忆中消失了。《几何原本》是用希腊文写成的,后来被翻译成多种文字。它首版于1482年,即谷登堡发明活字印刷术3O多年之后。自那时以来,《几何原本》已经出版了上千种不同版本。
  在训练人的逻辑推理思维方面,《几何原本》比亚里土多德的任何一本有关逻辑的著作影响都大得多。在完整的演绎推理结构方面,这是一个十分杰出的典范。正因为如此,自本书问世以来,思想家们为之而倾倒。
  公正地说,欧几里得的这本著作是现代科学产生的一个主要因素。科学绝不仅仅是把经过细心观察的东西和小心概括出来的东西收集在一起而已。科学上的伟大成就,就其原因而言,一方面是将经验同试验进行结合;另一方面,需要细心的分析和演绎推理。
  我们不清楚为什么科学产生在欧洲而不是在中国或日本。但可以肯定地说,这并非偶然。毫无疑问,像牛顿、伽利略、哥白尼和凯普勒这样的卓越人物所起的作用是极为重要的。也许一些基本的原因,可以解释为什么这些出类拔革的人物都出现在欧洲,而不是东方。或许,使欧洲人易于理解科学的一个明显的历史因素,是希腊的理性主义以及从希腊人那里流传下来的数学知识。
  对于欧洲人来讲,只要有了几个基本的物理原理,其他都可以由此推演而来的想法似乎是很自然的事。因为在他们之前有欧里得作为典范(总的来讲,欧洲人不把欧几里得的几何学仅仅看作是抽象的体系;他们认为欧几里得的公设,以及由此而来的定理都是建立在客观现实之上的)。
  上面提到的所有人物都接受了欧几里得的传统。他们的确都认真地学习过欧几里得的《几何原本》,并使之成为他们数学知识的基础。欧几里得对牛顿的影响尤为明显。牛顿的《数学原理》一书,就是按照类似于《几何原本》的“几何学”的形式写成的。自那以后,许多西方的科学家都效仿欧几里得,说明他们的结论是如何从最初的几个假设逻辑地推导出来的。许多数学家,像伯莎德·罗素、阿尔弗雷德·怀特海,以及一些哲学家,如斯宾诺莎也都如此。同中国进行比较,情况尤为令人瞩目。多少个世纪以来,中国在技术方面一直领先于欧洲。但是从来没有出现一个可以同欧几里得对应的中国数学家。其结果是,中国从未拥有过欧洲人那样的数学理论体系(中国人对实际的几何知识理解得不错,但他们的几何知识从未被提高到演绎体系的高度)。直到1600年,欧几里得才被介绍到中国来。此后,又用了几个世纪的时间,他的演绎几何体系才在受过教育的中国人之中普遍知晓。在这之前,中国人并没有从事实质性的科学工作。
  在日本,情况也是如此。直到18世纪,日本人才知道欧几里得的著作,并且用了很多年才理解了该书的主要思想。尽管今天日本有许多著名的科学家,但在欧几里得之前却没有一个。人们不禁会问,如果没欧几里得的奠基性工作,科学会在欧洲产生吗?
  如今,数学家们已经记识到,欧几里得的几何学并不是能够设计出来的惟一的一种内在统一的几何体系。在过去的150年间,人们已经创立出许多非欧几里得几何体系。自从爱因斯坦的广义相对论被接受以来,人们的确已经认识到,在实际的宇宙之中,欧几里得的几何学并非总是正确的。便如,在黑洞和中子星的周围,引力场极为强烈。在这种情况下,欧几里得的几何学无法准确地描述宇宙的情况。但是,这些情况是相当特殊的。在大多数情况下,欧几里得的几何学可以给出十分近似于现实世界的结论。
  不管怎样,人类知识的这些最新进展都不会水削弱欧向里得学术成就的光芒。也不会因此贬低他在数学发展和建立现代科学成长必不可少的逻辑框架方面的历史重要性。
  本文转载自数学公园
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2024-12-22 15:15 , Processed in 0.078125 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表