他们不可能在信封背面或是餐馆的餐巾上写些什么算式,或是挥挥手示意把“这个”加到“那个”上,或是把“那个”用在“这里”。不过从许多方面而言,盲人和其他数学工作者的工作方式一样:有人曾问过科罗拉多大学(University of Colorado)的盲人数学工作者劳伦斯·W·拜吉特(Lawrence W. Bagget),他是如何不用纸笔把复杂的公式印在脑子里的?他坦白地说:“嗯,这个,无论是谁都很难。”然而从另一方面来说,他们对数学的理解又有所不同。莫林回忆起一位视力健全的同事校勘他的论文时,需要进行冗长的行列式计算来确定一个正负号。这位同事问他是如何计算的,莫林说自己回答道:“我真不清楚——就是想象这个那个形体,感觉一下它的重量而已。”
失明之后,莫林离开上海回到法国,并一直呆在法国。他在法国盲哑学校上到十五岁,然后上了一所普通高中。他对数学和哲学感兴趣,可他父亲并不认为儿子在数学方面会有多大建树,便让他读了哲学。莫林在巴黎高师学习了几年之后,放弃了对哲学的幻想而转学数学。他师从亨利·嘉当(Henri Cartan),并在 1957 年进入国家科学研究中心(Centre National de la Recherche Scientiique)担任研究员——此时的莫林已经因为球面外翻的研究而小有名气。后来他又师从勒内·托姆(René Thom),在 1972 年完成了关于奇点理论的论文拿到了博士学位,又在高级研究院工作了两年。莫林一生的大部分时间都在斯特拉斯堡大学(Université de Strasbourg)任教,并于 1999 年退休。
史蒂芬·斯梅尔(1930-)
1959 年,史蒂芬·斯梅尔(Stephen Smale)证明了一个令人惊奇的定理:所有 n 维球面的欧氏空间浸入都是正则同伦的。这就意味着三维球体对三维空间的标准浸入和反浸入是正则同伦的。这也就是说球面可以外翻——或者说把里面翻到外面来。然而,根据斯梅尔论文构造球面外翻显得过于复杂。二十世纪六十年代早期,阿诺德·夏皮罗(Arnold Shapiro)做出了一种球面外翻的方法,但并未发表。他把这种方法解释给了莫林,而莫林也已经独立构思出了类似的想法。物理学家马赛尔·弗诺萨特(Marcel Froissart)也对这个问题有兴趣,并向莫林建议了一个关键性的简化步骤——而莫林制作陶模型正是为了和弗诺萨特合作。1967 年,莫林首次展示了能够进行球面外翻的同伦。
加州大学伯克利分校的查尔斯·皮尤(Charles Pugh)借助莫林的陶模型的照片构建了外翻不同阶段的鸡笼模型。1976 年,尼尔森·麦克斯(Nelson Max)制作的著名纪录片《球面外翻》就用了对皮尤模型测量的结果,麦克斯现在是劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)的数学工作者。这部纪录片是计算机图形史上的奇迹。实际上莫林的球面外翻有两种方法,一开始他也不知道影片中记录的是哪一种。他询问了看过影片的同事,不过据他回忆“没人能说出到底是哪一种”。
自麦克斯的纪录片问世以后,世界上已经出现了其他的外翻方法,也产生了记录这些新方法的影片。其中一种外翻方法是低维拓扑的重量级人物威廉·瑟斯顿(William Thurston)发明的。瑟斯顿发明了一种能够从斯梅尔的原始证明中构造的方式。几何中心的影片《从外到内》记录了这种外翻方法。马萨诸塞大学安姆斯特分校(University of Massachusetts at Amherst)的罗布·库什纳(Rob Kusner)发现了另外一种方法,他还提出了最小能量法可以用来做出莫林的外翻。伊利诺伊大学的数学工作者约翰·M·沙利文(John M. Sullivan)、乔治·弗朗西斯(George Francis)和斯图尔特·列维(Stuart Levy)在 1998 年拍摄的纪录片《最优外翻》中,记录了库什纳的这一想法。雕塑家、图形动画专家斯图尔特·迪克森(Stewart Dickson)用《最优外翻》中的数据,为一个名叫“感知数学”的活动(该活动旨在制作盲人可以使用的几何体模型)制造出了最优外翻的不同阶段的数学模型。一部分模型在 2000 年 9 月的法国莫伯日(Maubeuge)举行的国际艺术与数学研讨会上送给了莫林。莫林开心地将模型放在了自己的客厅里。
并非所有的盲人数学工作者都研究几何。尽管分析学对失明人来说是个棘手的问题,但还是有不少人选择了分析学——比如劳伦斯·拜吉特(Lawrence Baggett)。他已经在科罗拉多大学波尔得分校(University of Colorado at Boulder)任教三十五年了。他五岁失明,但从小就喜欢数学,可以在头脑中做许多思维体操。他从没学过除法的正规计算法——因为用盲文来做长除法太复杂了——可是他发明了自己的除法计算法。盲文书籍很有限,他便让母亲和同学为他朗读。他一开始想做律师,因为“那时候盲人都当律师”,不过以后上了大学,他就决定改学数学了。
诺伯托·萨利纳斯(Norberto Salinas)二十世纪六十年代在阿根廷长大,自十岁起就失明了。跟拜吉特一样,他周围盲人的“标准职业”也是当律师,这样一来就没有什么数学物理的盲文资料。不过萨利纳斯的父母会给他朗读并且录音。他的父亲问自己在布宜诺斯艾利斯大学(University of Buenos Aires)数学物理系的朋友,儿子是否能参加入学考试。由于萨利纳斯考了最高分,于是学校允许他入学。在《数学史》杂志关于盲人数学工作者的网上讨论组中,帝国理工学院(Imperial College)的爱德华多·奥尔蒂斯(Eduardo Ortiz)回忆起他在布大的分析课堂上考核萨利纳斯的情景:当时他在奥尔蒂斯的手掌上画图来表现图形信息。后来奥尔蒂斯用这种方法在帝国理工学院教其他的盲人学生。萨利纳斯在秘鲁短暂地教过书,之后去美国密歇根大学读了博士,目前他在堪萨斯大学任教。
当前最著名的美国盲人数学工作者可能是扎卡里·J·巴特尔斯(Zachary J. Battles),他的光荣事迹甚至登上了《人物》杂志的封面。巴特尔斯也几乎是一出生就失明,三岁的时候被人从韩国孤儿院收养。他在宾夕法尼亚州立大学读完了数学学士,而后又读了计算机学士和硕士,还两次到乌克兰教英语并担任残疾学生的导师。如今,他获得了罗兹奖学金(Rhodes Scholarship)在牛津大学学习数学。巴特尔斯像其他许多盲人数学工作者一样,激励着视力健全人以及盲人。