|
连续 20 年统治菲尔兹奖,法国的数学是如何统治数学界的?
来源:老胡说科学 2023-09-11 22:26 发表于上海
灿若星河的法国数学界,图片来自 pixnet.net
法国的数学到底多厉害?
法国数学被认为是最严谨、水平最高的学科。它的数学水平到底高到什么程度呢?
来看一下菲尔兹奖。它号称数学界的诺贝尔奖,是数学界的学术最高奖项,甚至于比诺贝尔奖更珍贵。原因是菲尔兹奖每四年颁发一次,每次 2-4 个名额,其珍稀度等同于世界杯及奥运会。
虽然拿 NBA 总冠军十分难,但起码每年都有。若考虑到职业生涯长度,四年一次的大奖,可能很多数学家一辈子都没几次机会能够参与评奖。菲尔兹奖设置规定,只颁发给 40 周岁以下的“青年数学家”,夸张地说,简直是为数学天才量身定做的。
值得一提的是,法国数学家已经连续获得菲尔兹奖超过 20 年。菲尔兹奖得主最多的大学分别为:哈佛大学(18 位),巴黎大学(16 位),巴黎高等师范学院(15 位),普林斯顿大学(14 位)。需要提醒的是,美国大学里面的科学家并非都是美国人,而法国大学里得奖的几乎都是法国人。
巴黎是世界上数学家最集中的地方,比如闻名遐迩的数学大师韦达、梅森、笛卡尔、费马、帕斯卡、达朗贝尔、拉格朗日、泊松、傅里叶、拉普拉斯、柯西等等。历史上有很多著名的法国数学家,在微积分领域,法国数学家的数量就占去了几乎 1/3 。
法国人对于数学界的贡献不可谓不大,从初中数学的韦达定理,到高等数学的代表人物拉格朗日,甚至于近代数学大师庞加莱,法国在几百年的数学历史中,始终保持着旺盛的生命力。
法国数学大师有笛卡尔,韦达,帕斯卡,费马,拉格朗日,拉普拉斯,达朗贝尔,勒让德,蒙日,彭赛列,柯西,傅里叶,庞加莱,伽罗华,格罗藤迪克等等。而这些令无数大学生“闻风丧胆”的数学家,几乎都诞生在 17 至 20 世纪的法国。
据统计,法国是世界上获得菲尔兹(Fields)奖人数最多的第二大国,仅次于美国。如果从人口比例来算,法国绝对是世界第一。
法国的数学巅峰是:19 世纪的法国数学界四大“天王”——柯西、傅里叶、伽罗华、庞加莱。
有意思的是,2018 年 1 月份,法国总统马克龙访华,其中团队里就有一位法国著名的数学家——塞德里克·维拉尼。他被认为是偏微分方程顶尖数学家,36 岁就获得了菲尔兹大奖,人称“数学界的 Lady Gaga”。
下面分别介绍一下法国的四大天王数学家:
一、法国四大天王数学家
01 多产数学家——柯西
柯西(Cauchy , 1789—1857)是法国数学家、物理学家、天文学家。著名的复变函数的微积分理论就是由他创立的。柯西在代数、理论物理、光学、弹性理论方面,具有十分突出的贡献。
柯西数学成就不仅辉煌,且数量惊人。柯西全集有 27 卷,论著有 800 多篇,他在数学史上是仅次于欧拉的多产数学家。并且他的名字与许多定理、准则一起被铭记在当今许多教材中。
柯西,图片来自 famous-mathematicians.com
柯西在纯数学和应用数学方面的功力十分深厚,特别是在数学写作上。他一生一共著作了 789 篇论文和几本书,其中有些是经典之作。据说,法国科学院“会刊”创刊之时,由于柯西的作品实在太多,使得法国科学院要承担很大的印刷费用,超出了科学院的预算。因此,科学院规定论文最长只能有 4 页,柯西较长的论文只能投稿到其它地方。
柯西少年时,父亲常带领他到法国参议院内的办公室,并在那里指导他学习,柯西因此有机会遇到参议员拉普拉斯和拉格朗日两位大数学家。他们对柯西的才能十分赏识,拉格朗日认为他将来必定会成为大数学家。
柯西在学生时代,有个绰号叫苦瓜,因为他平常像一颗苦瓜一样,安静的不说话,即使说了什么,也很简短,令人摸不着头绪,因此,和这种人沟通,被认为是很痛苦的。柯西的身边没有朋友,只有一群妒嫉他聪明的人。
02 传热理论数学大师——傅里叶
让·巴普蒂斯·约瑟夫·傅立叶(Jean Baptiste Joseph Fourier,1768 –1830),法国举世闻名的数学家、物理学家,1817 年当选为科学院院士,1822 年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会主席,主要贡献是在研究热的传播时创立了一套数学理论。傅立叶正是由于对传热理论的贡献于 1817 年当选为巴黎科学院院士。
傅立叶,图片来自 cnrs.fr
1822 年,傅立叶终于出版了专著《热的解析理论》。这部经典著作将欧拉、伯努利等人在一些特殊情形下应用的三角级数方法发展成内容丰富的一般理论,三角级数后来就以傅立叶的名字命名。
傅立叶应用三角级数求解热传导方程,为了处理无穷区域的热传导问题又导出了当前所称的“傅立叶积分”,这一切都极大地推动了偏微分方程边值问题的研究。《热的解析理论》影响了整个 19 世纪分析严格化的进程,傅立叶 1822 年成为科学院终身秘书。
傅里叶极度痴迷热学,他认为热能包治百病,于是在一个夏天,他关上了家中的门窗,穿上厚厚的衣服,坐在火炉边,被活活热死。1830 年 5 月 16 日,傅里叶卒于法国巴黎。
傅里叶的科学成就,主要在于他对热传导问题的研究,以及他为推进这一方面的研究所引入的数学方法。
03 群论之父——伽罗华
伽罗华
伽罗华死于一次近乎自杀的决斗,21 岁的他被公认为是数学史上两个最具浪漫主义色彩的人物之一。他是法国天才数学家,是公认的群论概念的主要开拓者,对函数论、方程式论和数论做出十分重要的贡献。在其父亲自杀后,他放弃投身数学生涯,注册担任辅导教师。
1811 年 10 月 25 日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗华街的第 54 号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特·伽罗华生于此,卒年 21 岁,1811~1832 年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗华表示敬意,于 1909 年 6 月设置。
伽罗华最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,由此发展了一整套关于群和域的理论,后人为了纪念他,称之为伽罗华理论。正是他这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程碑,同时为数学研究工作提供了新的数学工具——群论。伽罗华对数学分析、几何学的发展有很大影响,标志着数学发展现代阶段的开始。
伽罗华十分彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题,这成为伽罗华工作中的第一个“突破”。他开创了置换群论的研究,确立了代数方程的可解性理论,从而彻底解决了一般方程的根式解难题。伽罗瓦使用群论的想法去讨论方程式的可解性,整套想法现称为伽罗瓦理论,是当代代数与数论的基本支柱之一。
04 天才数学家——庞加莱
法国天才数学和物理学家庞加莱的研究涉及数论、代数学、几何学、拓扑学等诸多领域,被后人称为“最后一位数学全才”。在庞加莱之前被称为世界数学全才的是高斯。
亨利·庞加莱
在爱因斯坦之前,物理学家洛伦兹和数学家庞加莱都已经在这个方向上做了大量的工作,但庞加莱似乎无法接受爱因斯坦的狭义相对论,尽管两个人的结果几乎一样。因此,庞加莱虽然做了很多关于相对论的演讲,但他从来就没提起过爱因斯坦和相对论这两个词。爱因斯坦不仅不引用庞加莱的工作,并且宣称从未读过。
当爱因斯坦的母校苏黎世理工学院要聘请爱因斯坦当教授时,庞加莱写了一封信,大大地夸奖了爱因斯坦一番,最后一段话十分微妙:“我不认为他的预言将来都能被验证,他从事的方向那么多,因此我们应该会想到,他的某些研究会走向死胡同。但同时,我们有希望认为他走的某一个方向会获得成功,而某一个成功,就足够了。”
庞加莱于 1912 年去世,有位数学界的组织者给爱因斯坦去了一封信,说要出个纪念文集来纪念庞加莱。爱因斯坦拖了四个月才回信说,由于路上耽搁,信刚刚收到,估计已经晚了。
组织者没死心,说晚了也没关系,你写了就行。于是爱因斯坦又过了两个半月回信说,由于事务繁忙,实在没力气写了,最终不了了之。
爱因斯坦最终在 1921 年的讲演中公正地肯定了庞加莱对相对论的贡献。他评价庞加莱为相对论先驱之一:“洛伦兹已经认出了以他命名的变换对于麦克斯韦方程组的分析是基本的,而庞加莱进一步深化了这个远见……”
法国著名数学家阿达马认为,庞加莱“整个地改变了数学科学的状况,在一切方向上打开了新的道路。”英国著名数学家罗素认为,20 世纪初法兰西最伟大的人物就是亨利·庞加莱。他曾说:“当我最近在盖·吕萨街庞加莱通风的休息处拜访他时,我的舌头一下子失去了功能,直到我用了一些时间仔细端详和承受了可谓他思想的外部形式的年轻面貌时,我才发现自己能够开始说话了。”
法国数学人才辈出,几百年间,诞生了闻名遐迩的数学大师,下面再介绍一些影响世界的著名法国数学家。
二、影响世界的著名法国数学家
01 才华横溢的年轻数学大师——帕斯卡
帕斯卡
布莱士·帕斯卡(Blaise Pascal),公元 1623 年 6 月 19 日出生于多姆山省奥弗涅地区的克莱蒙费朗,法国数学家、物理学家、哲学家、散文家。帕斯卡成就众多,他在数学和物理学方面所做出的贡献,在科学史上占有极其重要的地位。
帕斯卡的数学造诣非常深,除了对概率论等方面具有卓越贡献外,他最突出的是著名的帕斯卡定理。帕斯卡定理是射影几何的一个重要定理,即“圆锥曲线内接六边形其三对边的交点共线”,这是他在《关于圆锥曲线的论文》中提出的。
在代数研究中,他发表过多篇关于算术级数及二项式系数的论文,发现了二项式展开式的系数规律,即著名的“帕斯卡三角形”。他与著名数学家费马共同建立了概率论和组合论的基础,并得出了关于概率论问题的一系列解法。他研究了摆线问题,得出了不同曲线面积和重心的一般求法。他计算了三角函数和正切的积分,最早引入了椭圆积分。
帕斯卡研究了液体的力学性质,发表了论文《关于流体平衡的实验》,著名的帕斯卡定律就是记载在这篇论文中的。为了纪念帕斯卡在压强研究方面的杰出贡献,国际单位制中用“帕斯卡”来命名压强的单位。
十分遗憾的是,如此才华横溢的青年,竟然在风华正茂、大有作为的时候,决定放弃了科学研究,投身到神学中。他在少年时期曾信仰宗教,有一天,他在巴黎乘马车发生了意外,差点掉进河里。受惊之余,他以为大难不死,必有神明保佑,于是,决心放弃科学去研究神学。甚至走向了极端,把带尖刺的腰带缠在腰上,当他认为大脑中有不够“虔诚”的念头出现时,他就用手去打腰带惩罚自己,最终如此折磨自己,年仅 39 岁就去世了。
帕斯卡还有个严重的缺点,不爱体育活动,在他 18 岁时身体就开始衰弱,始终病魔缠身,30 岁刚出头就疾病不断,由于体弱多病,使科学研究工作受到了很大影响。
02 曾经是拿破仑的数学老师——拉普拉斯
拉普拉斯
皮埃尔-西蒙·拉普拉斯(1749 年 3 月 23 日-1827 年 3 月 5 日),法国著名的天文学家和数学家,是天体力学的集大成者。1749 年生于法国西北部卡尔瓦多斯的博蒙昂诺日,1816 年被选为法兰西学院院士,1817 年任该院院长。
1812 年发表了重要的《概率分析理论》一书,在该书中总结了当时整个概率论的研究,论述了概率在选举审判调查、气象等方面的应用,导入”拉普拉斯变换“等。在拿破仑皇帝时期和路易十八时期两度获颁爵位。拉普拉斯曾任拿破仑的老师,因此和拿破仑结下不解之缘。1827 年 3 月 5 日卒于巴黎。
拉普拉斯主要集中于天体力学的研究。他把牛顿的万有引力定律应用到整个太阳系,1773 年解决了一个当时十分著名的难题:解释木星轨道为什么在不断地收缩,而同时土星的轨道又在不断地膨胀。拉普拉斯用数学方法证明行星平均运动的不变性,即行星的轨道大小只有周期性变化,并证明为偏心率和倾角的 3 次幂。这就是著名的拉普拉斯定理。
拉普拉斯在数学上有很多贡献,比如 1812 年他发表了重要的《概率分析理论》一书。他发表的天文学、数学和物理学的论文有 270 多篇,专著合计有 4006 多页。其中最有代表性的专著有《天体力学》、《宇宙体系论》和《概率分析理论》。
1796 年,他的著作《宇宙体系论》问世。由于他长期从事大行星运动理论和月球运动理论方面的研究,尤其是他特别注意研究太阳系天体摄动、太阳系的普遍稳定性问题以及太阳系稳定性的动力学问题。因此他被誉为法国的牛顿和天体力学之父。
拉普拉斯的《宇宙体系论》是经典天体力学的代表作。在这部书中,他独立于康德,提出了第一个科学的太阳系起源理论——星云说。康德的星云说是从哲学角度提出的,而拉普拉斯则从数学、力学角度充实了星云说,因此,人们常把他们两人的星云说称为“康德-拉普拉斯星云说”。
03 法国解析几何之父——笛卡尔
勒内·笛卡尔
勒内·笛卡尔 1596 年 3 月 31 日生于法国安德尔-卢瓦尔省的图赖讷,1650 年 2 月 11 日逝世于瑞典斯德哥尔摩,是全球著名的哲学家、数学家、物理学家。
笛卡尔对现代数学的发展做出了巨大的贡献,他因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,开拓了近代唯物论且提出了"普遍怀疑"的主张。
哲学大师黑格尔称他为“现代哲学之父”。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学,堪称 17 世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
笛卡尔方法具有双重意义。首先,他把“什么是知识”这个认识论的基本问题置于他的哲学体系的中心。由于早期哲学家力图描写世界的本质,但笛卡尔教导这样的问题若不和“我怎么能知道?”联系在一起,就无法获得满意的回答。
其次,笛卡尔认为不应该从信仰开始,而是从怀疑开始(这恰好与圣·奥古斯丁及大多数中世纪神学家的看法相反,他们认为信仰第一)。无疑笛卡尔确实得出了正统神学的结论。但读者对他的倡导方法远比对他得出的结论更为重视,因此,教会担心他的著作会起破坏性作用不是没有理由的。
笛卡尔强调科学的目的在于造福人类,让人成为自然界的主人和统治者。他反对经院哲学和神学,提出怀疑一切的“系统怀疑的方法”。但他还提出了“我思故我在”的原则,强调不能怀疑以思维为其属性的独立的精神实体的存在,并论证以广延为其属性的独立物质实体的存在。他认为上述两实体都是有限实体,把它们并列起来,这说明了在形而上学或本体论上,笛卡尔是典型的二元论者。
笛卡尔还企图证明无限实体,也就是上帝的存在。他认为上帝是有限实体的创造者和终极的原因。笛卡尔的认识论基本上是唯心主义的。他主张唯理论,把几何学的推理方法和演绎法应用于哲学上,认为清晰明白的概念就是真理,提出“天赋观念”。
笛卡尔的自然哲学观与亚里士多德的学说是完全对立的。他认为,所有物质的东西,都是为同一机械规律所支配的机器,甚至人体也是如此。笛卡尔又认为,除了机械的世界外,还有一个精神世界存在,这种二元论的观点后来成了欧洲人的根本思想方法。
笛卡尔最著名的思想就是“我思故我在”,意思是:“当我怀疑一切事物的存在时,我却不用怀疑我本身的思想,因为此时我唯一可以确定的事就是我自己思想的存在”。这句被笛卡尔 Descartes 当作自己的哲学体系的出发点的名言,在之前被认为是极端主观唯心主义的总代表,而遭到严厉的批判。
笛卡尔对数学最重大的贡献是他创立了解析几何。笛卡尔成功地将当时完全分开的代数和几何学联系到了一起。在 Descartes 的著作《几何》中,笛卡尔曾向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡儿引入了坐标系以及线段的运算概念。笛卡尔在数学上的成就为后人在微积分上的工作提供了坚实的基础,而后者又是现代数学的重要基石。
现在使用的许多数学符号都是笛卡尔最先开始使用的,包括已知数 a, b, c 以及未知数 x, y, z 等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。另外,还有微积分中常见的笛卡尔叶形线也是他发现的。
在物理学方面,笛卡尔也有所成就。比如他在《屈光学》中第一次对光的折射定律提出了理论论证。他还解释了人的视力失常的原因,并设计了矫正视力的透镜。在力学上,笛卡尔发展了伽利略运动相对性的理论,强调了惯性运动的直线性。笛卡尔发现了动量守恒原理。他还发展了宇宙演化论、漩涡说等理论学说,尽管具体理论有不少缺陷,但仍然对以后的自然科学家产生了很大影响。
笛卡尔 Descartes 还用光的折射定律来解释彩虹现象,并通过元素微粒的旋转速度来分析颜色。
笛卡尔把他的机械论观点应用到天体,发展了宇宙演化论,形成了他关于宇宙发生与构造的学说。笛卡尔还创立了漩涡说。他认为太阳的周围有巨大的漩涡,带动着行星不断运转。物质的质点处于统一的漩涡之中,在运动中分化出土、空气和火三种元素,土形成行星,火则形成太阳和恒星。
笛卡尔认为天体的运动来源于惯性和某种宇宙物质旋涡对天体的压力,在各种大小不同的旋涡的中心必有某一天体,以这种假说来解释天体间的相互作用。笛卡儿的太阳起源的以太旋涡模型第一次依靠力学而不是神学,解释了天体、太阳、行星、卫星、彗星等的形成过程,比康德的星云说早一个世纪,成为 17 世纪中最具权威的宇宙论。
17-18 世纪彼时的法兰西数学界,群星璀璨,英杰辈出,数学水平远超其他国家。抛开虚无缥缈的基因论不谈,其实这一现象的产生实属历史的必然。
04 法国数学及概率论大师——棣墨弗
亚伯拉罕·棣莫弗
亚伯拉罕·棣莫弗,1667 年 5 月 26 日生于法国维特里的弗朗索瓦;1754 年 11 月 27 日卒于英国伦敦。
棣莫弗一次偶然读到牛顿的《原理》(Principia),他信手一翻,却惊奇地发现:“数学竟然如此精深如此美丽的一门学问!”于是,他不仅买下那本书,还撕下书页,以便揣在口袋随时研读。Chancellor W.E 曾说:“学习数学是为了探索宇宙的奥秘。如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。如果说语言反映和揭示了造物主的心声,那么数学就反映和揭示了造物主的智慧,并且反复地重复着事物如何变异为存在地故事。”
概率论肇始于 17 世纪,卡尔达诺、费马、帕斯卡等人是概率论早期的研究者,他们所研究的主要是关于相互独立随机事件的概率——机会方面的问题。比如讨论如赌博、有奖抽彩过程中的“机会”。
后来,人们要求解决与大量事件集合有关的概率或期望值问题,比如奖券的总数很大,已知每一张奖券中奖的机会都相等,那么抽取 1000 张、10000 张奖券中奖的概率有多大呢?如果要保证中奖的可能性达到 90% ,那么至少应该购买多少张奖券。
考虑一系列随机事件(如随机地抛掷硬币),某一事件出现(如抛掷硬币时出现正面)之概率为 P ,n 表示所有随机事件的总数,m 是某一事件出现的数目,那么该事件出现的次数(m)与全体事件的次数(n)之比将会呈现什么规律呢?这成为 17 世纪概率论中一个十分重要的问题。
较早期的概率史上有三部里程碑的著作:一是棣莫弗的《机遇论》,二是伯努利的《推测术》,三是拉普拉斯的《概率的分析理论》。
棣莫弗工作的统计意义在于:首先,采用频率估计概率这个特例而言,观察值的算术平均的精度,与观察次数 N 的平方根成比例,这个可看做人类认识自然的一个重大进展。
其次,棣莫弗的工作对数理统计学最大的影响,当然还在于现今以他的名字命名的中心极限定理。棣莫弗做出他的发现后约 40 年,拉普拉斯建立了中心极限定理较一般的形式,独立和中心极限定理最一般的形式到 20 世纪 30 年代才最后完成。
05 法国数学花木兰——索菲·热尔曼
索菲·热尔曼(1776~1831 年),是法国的女数学家。出身在巴黎一个殷实的商人家庭,从小热爱数学,但家庭不鼓励。她父亲是一位法国银行总裁。
索菲·热尔曼
热尔曼从小喜欢数学源于一个故事。有天,热尔曼读到罗马攻占叙拉古城时,阿基米德还在专心研究一堆沙子组成的几何图形,没听到某个罗马士兵的问话,由此招来杀身之祸。热尔曼当时想,能让人如此痴迷于一个东西,甚至不顾生死,这个东西一定是世界上最美的、最迷人的。于是,她选择了数学,而且还自学了微积分。
法国女性当时在学术上受到严重歧视,比如巴黎综合工科大学(Polytechnique)就不收女生。热尔曼想了个办法,她搞来这个学校所有的数学讲义,自己学习钻研,而且还以男生 Le Blanc 的名义,上交了作业。法国著名数学家拉格朗日读到热尔曼的论文后,大为欣赏,决定去 Le Blanc 家亲自面见这个聪明的高材生。热尔曼女扮男装,但最终穿帮了,但拉格朗日却欣然收下热尔曼为徒。
热尔曼选择当时名声最盛的费马大定理作为研究方向,不久,她把自己的研究结果寄给数学家高斯(Gauss),获得高斯非常高的评价,而热尔曼的这个研究结果,被认为当时是最好的,那时她仅二十岁。
1816 年,法国科学院的一则悬赏内容在数学界炸开了锅,悬赏是关于弹性表面的数学表达式,没有想到热尔曼最终胜出,成为第一位凭借自己的学术成绩获得“科学院金质奖章”的女性。但十分可惜的是,这位被称为“法国数学花木兰”、近代史上第一位作出重大成就的女数学家,尽管在数论、应有数学等方面硕果累累,仍然受到歧视。
热尔曼,一生未获得任何学位、没有当过大学教授,但在她的死亡证明书上,身份被登记为“无职业未婚妇女”。后人为纪念热尔曼对数论的巨大贡献,将 p 与 2p+1 质数称为“苏菲·热尔曼质数”。巴黎的一条街道和一所高中,也都以热尔曼的名字命名。 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|