拓扑是流形的一种非常基本的结构,表面上与定义在其上的度量无关。然而,几何中的定理却表明并非如此。当我在一间狭小的复印室里撰写题为“关于具有非正曲率紧流形的基本群(On the fundamental group of compact manifolds of non-positive curvature )”的论文时,遇到阿瑟·费舍尔(Arthur Fisher),他抢着阅读了我的论文,看完后异常兴奋,评论道:“任何将几何与拓扑联系起来的内容,对物理来说都应该很重要”。
最后的结果表明,在相当一般的情形下,面积最小的圆盘或面积最小的球面是嵌入的。大约十年的时间里,这成为研究三维流形拓扑的重要工具,并与瑟斯顿(William Paul Thurston)和戈登(Cameron Gordon)的工作相结合,解决了著名的“史密斯猜想”,该猜想声称三维球面的有限对称性是线性的。孙理察和我利用某种类型的极小曲面的存在性来解决广义相对论中的正质量猜想。这个猜想在广义相对论的理论中展示了(孤立的物理)时空的稳定性。在证明过程中,我们引入了几个概念:
我的朋友希钦有一篇关于这些特殊周期链空间的文章,非常优美。文章让我们对于镜像的构造有了更加强烈的期望,当然仍然有许多细节需要补充。这让我们想到了韦依猜想(André Weil Conjecture),它制定了大纲。尽管人们已经确定了几个重要问题,但以格罗滕迪克(Alexander Grothendieck)为代表的一大批杰出数学家,花费二十年时间才得以完成韦依猜想的主要部分。
在过去三十年中,我也做了一些应用数学问题的研究,其中一个重要问题是我与弟弟丘成栋共同完成的非线性滤波的研究。我们找到了首个有效的计算非线性滤波的方法。对于线性滤波而言,卡尔曼(Rudolf Emil Kálmán)完成了基础性工作,线性滤波有着广泛的应用。但在真实世界滤波是非线性的,当人们做线性近似时,计算结果往往是错误的。我希望丘-丘滤波将在工业界具有更大的影响。